


Einführung in einfache Betriebsmethoden von pandas.DataFrame (Erstellen, Indizieren, Hinzufügen und Löschen) in Python
In diesem Artikel werden die einfachen Betriebsmethoden von pandas.DataFrame (Erstellung, Indizierung, Hinzufügung und Löschung) in Python vorgestellt, einschließlich zugehöriger Informationen zur Erstellung, Indizierung, Hinzufügung und Löschung. Der Artikel stellt es ausführlich vor Als Referenz werfen wir einen Blick nach unten.
Vorwort
In letzter Zeit habe ich im Internet viele Bedienungsanleitungen nach pandas.DataFrame
durchsucht, bei denen es sich zwar alles um Grundoperationen handelt, aber Die Kombination dieser Vorgänge scheint immer noch einige Zeit in Anspruch zu nehmen, um den DataFrame korrekt zu betreiben, und ich habe lange gebraucht, um den Fehler zu beheben. Ich werde hier einige Zusammenfassungen für Sie, mich und andere erstellen. Freunde, die Interesse haben, sollten vorbeikommen und einen Blick darauf werfen.
1. Einfache Operation zum Erstellen von DataFrame:
1. Erstellen Sie basierend auf dem Wörterbuch:
In [1]: import pandas as pd In [3]: aa={'one':[1,2,3],'two':[2,3,4],'three':[3,4,5]} In [4]: bb=pd.DataFrame(aa) In [5]: bb Out[5]: one three two 0 1 3 2 1 2 4 3 2 3 5 4`
Die Schlüssel im Wörterbuch sind die Spalten im DataFrame, aber es gibt keinen Indexwert, daher müssen Sie ihn selbst festlegen. Wenn er nicht festgelegt ist, beginnt die Zählung standardmäßig bei Null.
bb=pd.DataFrame(aa,index=['first','second','third']) bb Out[7]: one three two first 1 3 2 second 2 4 3 third 3 5 4
2. Aus einem mehrdimensionalen Array erstellen
import numpy as np In [9]: del aa In [10]: aa=np.array([[1,2,3],[4,5,6],[7,8,9]]) In [11]: aa Out[11]: array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) In [12]: bb=pd.DataFrame(aa) In [13]: bb Out[13]: 0 1 2 0 1 2 3 1 4 5 6 2 7 8 9
Um aus einem mehrdimensionalen Array zu erstellen, müssen Sie ihm Spalten und Indizes zuweisen der DataFrame, sonst ist es die Standardeinstellung. Sehr hässlich.
bb=pd.DataFrame(aa,index=[22,33,44],columns=['one','two','three']) In [15]: bb Out[15]: one two three 22 1 2 3 33 4 5 6 44 7 8 9
3. Verwenden Sie einen anderen DataFrame, um
bb=pd.DataFrame(aa,index=[22,33,44],columns=['one','two','three']) bb Out[15]: one two three 22 1 2 3 33 4 5 6 44 7 8 9 cc=bb[['one','three']].copy() Cc Out[17]: one three 22 1 3 33 4 6 44 7 9
Die Kopie hier ist eine tiefe Kopie, die den Wert in bb nicht ändern kann . .
cc['three'][22]=5 bb Out[19]: one two three 22 1 2 3 33 4 5 6 44 7 8 9 cc Out[20]: one three 22 1 5 33 4 6 44 7 9
2. Indexoperation von DataFrame:
Für einen DataFrame ist die Indizierung am problematischsten und fehleranfälligsten.
1. Das Indizieren einer oder mehrerer Spalten ist relativ einfach:
bb['one'] Out[21]: 22 1 33 4 44 7 Name: one, dtype: int32
Für mehrere Spaltennamen müssen die Eingabespaltennamen in einer Liste gespeichert werden kollierbaren Variablen, andernfalls wird ein Fehler gemeldet.
bb[['one','three']] Out[29]: one three 22 1 3 33 4 6 44 7 9
2. Indexieren Sie einen Datensatz oder mehrere Datensätze:
bb[1:3] Out[27]: one two three 33 4 5 6 44 7 8 9 bb[:1] Out[28]: one two three 22 1 2 3
Beachten Sie hier, dass der Doppelpunkt erforderlich ist, andernfalls ist er erforderlich Indexspalte.
3. Indizieren Sie bestimmte Datensätze von Variablen in bestimmten Spalten. Das hat mich lange gequält:
Der erste Typ
bb.loc[[22,33]][['one','three']] Out[30]: one three 22 1 3 33 4 6
Sie können den Wert hier nicht ändern. Sie können den Wert nur lesen, aber nicht schreiben. Dies hängt möglicherweise mit der Funktion loc()
bb.loc[[22,33]][['one','three']]=[[2,2],[3,6]] In [32]: bb Out[32]: one two three 22 1 2 3 33 4 5 6 44 7 8 9
bb[['one','three']][:2] Out[33]: one three 22 1 3 33 4 6
In [34]: bb[['one','three']][:2]=[[2,2],[2,2]] -c:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_index,col_indexer] = value instead F:\Anaconda\lib\site-packages\pandas\core\frame.py:1999: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame return self._setitem_slice(indexer, value)
bb.iloc[2:3,2:3] Out[36]: three 44 9 bb.iloc[1:3,1:3] Out[37]: two three 33 5 6 44 8 9 bb.iloc[0,0] Out[38]: 1
bb.iloc[0:4,0:2]=[[9,9],[9,9],[9,9]] In [45]: bb Out[45]: one two three 22 9 9 3 33 9 9 6 44 9 9 9
Drei . Erstellen Sie eine neue Spalte oder mehrere Spalten auf dem ursprünglichen DataFrame
1. Es können nur eine Spalte allein erstellt werden Nicht einfach zu verwenden. Persönlicher Test. Ungültig: Die von
bb['new']=[2,3,4] bb Out[51]: one two three new 22 9 9 3 2 33 9 9 6 3 44 9 9 9 4 bb[['new','new2']]=[[2,3,4],[5,3,7]] KeyError: "['new' 'new2'] not in index"
2. Verwenden Sie ein Wörterbuch, um mehreren Spalten Werte nach Index zuzuweisen:
aa={33:[234,44,55],44:[657,77,77],22:[33,55,457]} In [58]: bb=bb.join(pd.DataFrame(aa.values(),columns=['hi','hello','ok'],index=aa.keys())) In [59]: bb Out[59]: one two three new hi hello ok 22 9 9 3 2 33 55 457 33 9 9 6 3 234 44 55 44 9 9 9 4 657 77 77
chaotisch ist, führt die Verwendung von dict()
ohne Zuweisung eines Werts zu seinem Index zu Verwirrung in den Datensätzen. Dies ist erwähnenswert. dict()
4. Mehrere Spalten oder Datensätze löschen:
Spalten löschen
bb.drop(['new','hi'],axis=1) Out[60]: one two three hello ok 22 9 9 3 55 457 33 9 9 6 44 55 44 9 9 9 77 77
Datensätze löschen
bb.drop([22,33],axis=0) Out[61]: one two three new hi hello ok 44 9 9 9 4 657 77 77
Über pandas.DataFrame in Python zum Summieren von Zeilen und Spalten und zum Hinzufügen neuer Zeilen und Spalten, Beispielcode
Ausführlich Erläuterung des Beispielcodes der pandas.DataFrame-Methode zum Ausschließen bestimmter Zeilen in Python
Das obige ist der detaillierte Inhalt vonEinführung in einfache Betriebsmethoden von pandas.DataFrame (Erstellen, Indizieren, Hinzufügen und Löschen) in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP ist hauptsächlich prozedurale Programmierung, unterstützt aber auch die objektorientierte Programmierung (OOP). Python unterstützt eine Vielzahl von Paradigmen, einschließlich OOP, funktionaler und prozeduraler Programmierung. PHP ist für die Webentwicklung geeignet, und Python eignet sich für eine Vielzahl von Anwendungen wie Datenanalyse und maschinelles Lernen.

PHP eignet sich für Webentwicklung und schnelles Prototyping, und Python eignet sich für Datenwissenschaft und maschinelles Lernen. 1.PHP wird für die dynamische Webentwicklung verwendet, mit einfacher Syntax und für schnelle Entwicklung geeignet. 2. Python hat eine kurze Syntax, ist für mehrere Felder geeignet und ein starkes Bibliotheksökosystem.

VS -Code kann unter Windows 8 ausgeführt werden, aber die Erfahrung ist möglicherweise nicht großartig. Stellen Sie zunächst sicher, dass das System auf den neuesten Patch aktualisiert wurde, und laden Sie dann das VS -Code -Installationspaket herunter, das der Systemarchitektur entspricht und sie wie aufgefordert installiert. Beachten Sie nach der Installation, dass einige Erweiterungen möglicherweise mit Windows 8 nicht kompatibel sind und nach alternativen Erweiterungen suchen oder neuere Windows -Systeme in einer virtuellen Maschine verwenden müssen. Installieren Sie die erforderlichen Erweiterungen, um zu überprüfen, ob sie ordnungsgemäß funktionieren. Obwohl VS -Code unter Windows 8 möglich ist, wird empfohlen, auf ein neueres Windows -System zu upgraden, um eine bessere Entwicklungserfahrung und Sicherheit zu erzielen.

VS -Code -Erweiterungen stellen böswillige Risiken dar, wie das Verstecken von böswilligem Code, das Ausbeutetieren von Schwachstellen und das Masturbieren als legitime Erweiterungen. Zu den Methoden zur Identifizierung böswilliger Erweiterungen gehören: Überprüfung von Verlegern, Lesen von Kommentaren, Überprüfung von Code und Installation mit Vorsicht. Zu den Sicherheitsmaßnahmen gehören auch: Sicherheitsbewusstsein, gute Gewohnheiten, regelmäßige Updates und Antivirensoftware.

Im VS -Code können Sie das Programm im Terminal in den folgenden Schritten ausführen: Erstellen Sie den Code und öffnen Sie das integrierte Terminal, um sicherzustellen, dass das Codeverzeichnis mit dem Terminal Working -Verzeichnis übereinstimmt. Wählen Sie den Befehl aus, den Befehl ausführen, gemäß der Programmiersprache (z. B. Pythons Python your_file_name.py), um zu überprüfen, ob er erfolgreich ausgeführt wird, und Fehler auflösen. Verwenden Sie den Debugger, um die Debugging -Effizienz zu verbessern.

VS -Code kann zum Schreiben von Python verwendet werden und bietet viele Funktionen, die es zu einem idealen Werkzeug für die Entwicklung von Python -Anwendungen machen. Sie ermöglichen es Benutzern: Installation von Python -Erweiterungen, um Funktionen wie Code -Abschluss, Syntax -Hervorhebung und Debugging zu erhalten. Verwenden Sie den Debugger, um Code Schritt für Schritt zu verfolgen, Fehler zu finden und zu beheben. Integrieren Sie Git für die Versionskontrolle. Verwenden Sie Tools für die Codeformatierung, um die Codekonsistenz aufrechtzuerhalten. Verwenden Sie das Lining -Tool, um potenzielle Probleme im Voraus zu erkennen.

VS -Code ist auf Mac verfügbar. Es verfügt über leistungsstarke Erweiterungen, GIT -Integration, Terminal und Debugger und bietet auch eine Fülle von Setup -Optionen. Für besonders große Projekte oder hoch berufliche Entwicklung kann VS -Code jedoch Leistung oder funktionale Einschränkungen aufweisen.

Python eignet sich besser für Anfänger mit einer reibungslosen Lernkurve und einer kurzen Syntax. JavaScript ist für die Front-End-Entwicklung mit einer steilen Lernkurve und einer flexiblen Syntax geeignet. 1. Python-Syntax ist intuitiv und für die Entwicklung von Datenwissenschaften und Back-End-Entwicklung geeignet. 2. JavaScript ist flexibel und in Front-End- und serverseitiger Programmierung weit verbreitet.
