Heim > Backend-Entwicklung > Python-Tutorial > Einführung in die Verwendung von Python-Deskriptoren für schwarze Magie

Einführung in die Verwendung von Python-Deskriptoren für schwarze Magie

高洛峰
Freigeben: 2017-03-17 17:36:37
Original
1192 Leute haben es durchsucht

Einführung

Deskriptoren (Deskriptoren) sind eine tiefgreifende, aber wichtige schwarze Magie in der Python-Sprache. Sie werden häufig im Kernel der Python-Sprache verwendet. Durch das Beherrschen von Deskriptoren wird der Werkzeugkasten des PythonProgrammierers um eine zusätzliche Fähigkeit erweitert. In diesem Artikel werde ich über die Definition von Deskriptoren und einige gängige Szenarien sprechen und am Ende des Artikels werde ich getattr, getattribute, getitem diese drei magischen Methoden hinzufügen, die auch beinhalten den Attributzugriff.

Deskriptordefinition

descrget(self, obj, objtype=None) --> value
descr.set(self, obj, value) --> None
descr.delete(self, obj) --> None
Nach dem Login kopieren

Nur ​​ein <code><a href="http://www.php.cn/wiki/60.html" target="_blank">object</a> attributeobject-Attribut (Object

-Attribut) definiert die oben genannten drei. Jeder der Methoden kann diese Klasse als Deskriptorklasse bezeichnet werden.

Deskriptor-Grundlagen

RevealAcessIm folgenden Beispiel erstellen wir eine get-Klasse und implementieren die

-Methode. Jetzt kann diese Klasse als Deskriptorklasse bezeichnet werden.
class RevealAccess(object):
    def get(self, obj, objtype):
        print(&#39;self in RevealAccess: {}&#39;.format(self))
        print(&#39;self: {}\nobj: {}\nobjtype: {}&#39;.format(self, obj, objtype))
class MyClass(object):
    x = RevealAccess()
    def test(self):
        print(&#39;self in MyClass: {}&#39;.format(self))
Nach dem Login kopieren

EX1-Instanzattribute

getAls nächstes werfen wir einen Blick auf die Bedeutung der einzelnen Parameter der self-Methode, obj ist die Instanz x der RevealAccess-Klasse, objtype ist die Instanz m der MyClass-Klasse und m.x ist, wie der Name schon sagt, die MyClass-Klasse selbst. Wie aus der Ausgabeanweisung hervorgeht, ruft der x-Zugriffsdeskriptor get die

-Methode auf.
>>> m = MyClass()
>>> m.test()
self in MyClass: <main.MyClass object at 0x7f19d4e42160>
>>> m.x
self in RevealAccess: <main.RevealAccess object at 0x7f19d4e420f0>
self: <main.RevealAccess object at 0x7f19d4e420f0>
obj: <main.MyClass object at 0x7f19d4e42160>
objtype: <class &#39;main.MyClass&#39;>
Nach dem Login kopieren

EX2-Klassenattribut

xWenn auf das Attribut obj direkt über die Klasse zugegriffen wird, ist die

-Verbindung direkt None, was einfacher ist zu verstehen, weil Es gibt keine Instanz von MyClass.
>>> MyClass.x
self in RevealAccess: <main.RevealAccess object at 0x7f53651070f0>
self: <main.RevealAccess object at 0x7f53651070f0>
obj: None
objtype: <class &#39;main.MyClass&#39;>
Nach dem Login kopieren

Prinzip des Deskriptors

Deskriptor-Trigger

Im obigen Beispiel haben wir die Verwendung von Deskriptoren aus der Perspektive von Instanzattributen bzw. Klassenattributen aufgelistet Schauen Sie sich die internen Prinzipien genauer an:
  • 实例属性Wenn Sie auf type(obj).dict[&#39;d&#39;].get(obj, type(obj)) zugreifen, wird tatsächlich die getattribute-Methode des Basisklassenobjekts aufgerufen, und in dieser Methode wird obj.d in <🎜 übersetzt >.

  • Wenn Sie auf 类属性 zugreifen, entspricht dies dem Aufruf der getattribute-Methode des Metaklassentyps, die cls.d in cls.dict[&#39;d&#39;].get(None, cls) übersetzt. Hier ist das Objekt von get() None weil keine Instanz existiert.

Lassen Sie uns kurz über die getattribute magische Methode sprechen. Diese Methode wird bedingungslos aufgerufen, wenn wir auf die Eigenschaften eines Objekts zugreifen. Die detaillierten Details sind wie getattr, getitem Ich werde am Ende des Artikels eine zusätzliche Ergänzung machen, aber wir werden uns vorerst nicht näher damit befassen.

DeskriptorPriorität

Deskriptoren werden zunächst in zwei Typen unterteilt:

  • Wenn ein Objekt auch get definiert ( ) und set()-Methoden wird dieser Deskriptor data descriptor genannt.

  • Wenn ein Objekt nur die Methode get() definiert, heißt dieser Deskriptor non-data descriptor.

Es gibt vier Situationen, in denen wir auf Attribute zugreifen:

  • Datendeskriptor

  • Instanzdikt

  • Nicht-Daten-Deskriptor

  • getattr()

ihre Priorität Die Größe ist:

data descriptor > instance dict > non-data descriptor > getattr()
Nach dem Login kopieren

Was bedeutet das? Das heißt, wenn data descriptor->d und instance attribute->d mit demselben Namen im Instanzobjekt obj erscheinen und obj.d auf das Attribut d zugreift, ruft Python type(obj).dict[&#39;d&#39;].get(obj, type(obj)) auf, da der Datendeskriptor eine höhere Priorität hat Stattdessen wird obj.dict['d'] nicht aufgerufen. Wenn der Deskriptor jedoch kein Datendeskriptor ist, ruft Python obj.dict[&#39;d&#39;] auf.

Eigenschaft

Es erscheint sehr umständlich, bei jeder Verwendung eines Deskriptors eine Deskriptorklasse zu definieren. Python bietet eine übersichtliche Möglichkeit, Datendeskriptoren zu Eigenschaften hinzuzufügen.

property(fget=None, fset=None, fdel=None, doc=None) -> property attribute
Nach dem Login kopieren

fget, fset und fdel sind die Getter-, Setter- und Deleter-Methoden der Klasse. Wir verwenden das folgende Beispiel, um die Verwendung von Property zu veranschaulichen:

class Account(object):
    def init(self):
        self._acct_num = None
    def get_acct_num(self):
        return self._acct_num
    def set_acct_num(self, value):
        self._acct_num = value
    def del_acct_num(self):
        del self._acct_num
    acct_num = property(get_acct_num, set_acct_num, del_acct_num, &#39;_acct_num property.&#39;)
Nach dem Login kopieren

Wenn acct eine Instanz von Account ist, ruft acct.acct_num den Getter auf, acct.acct_num = value ruft den Setter auf, del acct_num. acct_num delete wird aufgerufen.

>>> acct = Account()
>>> acct.acct_num = 1000
>>> acct.acct_num
1000
Nach dem Login kopieren

Python stellt außerdem den @property Decorator zur Verfügung, mit dem Attribute für einfache Anwendungsszenarien erstellt werden können. Ein Eigenschaftsobjekt verfügt über Getter-, Setter- und Delete-Decorator-Methoden, mit denen über die Zugriffsfunktion der entsprechenden dekorierten -Funktion eine Kopie der Eigenschaft erstellt werden kann.

class Account(object):
    def init(self):
        self._acct_num = None
    @property
     # the _acct_num property. the decorator creates a read-only property
    def acct_num(self):
        return self._acct_num
    @acct_num.setter
    # the _acct_num property setter makes the property writeable
    def set_acct_num(self, value):
        self._acct_num = value
    @acct_num.deleter
    def del_acct_num(self):
        del self._acct_num
Nach dem Login kopieren

Wenn Sie möchten, dass die Eigenschaft schreibgeschützt ist, entfernen Sie einfach die Setter-Methode.

在运行时创建描述符

我们可以在运行时添加property属性:

class Person(object):
    def addProperty(self, attribute):
        # create local setter and getter with a particular attribute name
        getter = lambda self: self._getProperty(attribute)
        setter = lambda self, value: self._setProperty(attribute, value)
        # construct property attribute and add it to the class
        setattr(self.class, attribute, property(fget=getter, \
                                                    fset=setter, \
                                                    doc="Auto-generated method"))
    def _setProperty(self, attribute, value):
        print("Setting: {} = {}".format(attribute, value))
        setattr(self, &#39;_&#39; + attribute, value.title())
    def _getProperty(self, attribute):
        print("Getting: {}".format(attribute))
        return getattr(self, &#39;_&#39; + attribute)
Nach dem Login kopieren
>>> user = Person()
>>> user.addProperty(&#39;name&#39;)
>>> user.addProperty(&#39;phone&#39;)
>>> user.name = &#39;john smith&#39;
Setting: name = john smith
>>> user.phone = &#39;12345&#39;
Setting: phone = 12345
>>> user.name
Getting: name
&#39;John Smith&#39;
>>> user.dict
{&#39;_phone&#39;: &#39;12345&#39;, &#39;_name&#39;: &#39;John Smith&#39;}
Nach dem Login kopieren

静态方法和类方法

我们可以使用描述符来模拟Python中的@<a href="http://www.php.cn/wiki/188.html" target="_blank">static</a>method@classmethod的实现。我们首先来浏览一下下面这张表:

TransformationCalled from an ObjectCalled from a Class
functionf(obj, *args)f(*args)
staticmethodf(*args)f(*args)
classmethodf(type(obj), *args)f(klass, *args)

静态方法

对于静态方法fc.fC.f是等价的,都是直接查询object.getattribute(c, ‘f’)或者object.getattribute(C, ’f‘)。静态方法一个明显的特征就是没有self变量

静态方法有什么用呢?假设有一个处理专门数据的容器类,它提供了一些方法来求平均数,中位数等统计数据方式,这些方法都是要依赖于相应的数据的。但是类中可能还有一些方法,并不依赖这些数据,这个时候我们可以将这些方法声明为静态方法,同时这也可以提高代码的可读性。

使用非数据描述符来模拟一下静态方法的实现:

class StaticMethod(object):
    def init(self, f):
        self.f = f
    def get(self, obj, objtype=None):
        return self.f
Nach dem Login kopieren

我们来应用一下:

class MyClass(object):
    @StaticMethod
    def get_x(x):
        return x
print(MyClass.get_x(100))  # output: 100
Nach dem Login kopieren

类方法

Python的@classmethod@staticmethod的用法有些类似,但是还是有些不同,当某些方法只需要得到类的<a href="http://www.php.cn/wiki/231.html" target="_blank">引用</a>而不关心类中的相应的数据的时候就需要使用classmethod了。

使用非数据描述符来模拟一下类方法的实现:

class ClassMethod(object):
    def init(self, f):
        self.f = f
    def get(self, obj, klass=None):
        if klass is None:
            klass = type(obj)
        def newfunc(*args):
            return self.f(klass, *args)
        return newfunc
Nach dem Login kopieren

其他的魔术方法

首次接触Python魔术方法的时候,我也被get, getattribute, getattr, getitem之间的区别困扰到了,它们都是和属性访问相关的魔术方法,其中重写getattrgetitem来构造一个自己的集合类非常的常用,下面我们就通过一些例子来看一下它们的应用。

getattr

Python默认访问类/实例的某个属性都是通过getattribute来调用的,getattribute会被无条件调用,没有找到的话就会调用getattr。如果我们要定制某个类,通常情况下我们不应该重写getattribute,而是应该重写getattr,很少看见重写getattribute的情况。

从下面的输出可以看出,当一个属性通过getattribute无法找到的时候会调用getattr

In [1]: class Test(object):
    ...:     def getattribute(self, item):
    ...:         print(&#39;call getattribute&#39;)
    ...:         return super(Test, self).getattribute(item)
    ...:     def getattr(self, item):
    ...:         return &#39;call getattr&#39;
    ...:
In [2]: Test().a
call getattribute
Out[2]: &#39;call getattr&#39;
Nach dem Login kopieren

应用

对于默认的字典,Python只支持以obj[&#39;foo&#39;]形式来访问,不支持obj.foo的形式,我们可以通过重写getattr让字典也支持obj[&#39;foo&#39;]的访问形式,这是一个非常经典常用的用法:

class Storage(dict):
    """
    A Storage object is like a dictionary except `obj.foo` can be used
    in addition to `obj[&#39;foo&#39;]`.
    """
    def getattr(self, key):
        try:
            return self[key]
        except KeyError as k:
            raise AttributeError(k)
    def setattr(self, key, value):
        self[key] = value
    def delattr(self, key):
        try:
            del self[key]
        except KeyError as k:
            raise AttributeError(k)
    def repr(self):
        return &#39;<Storage &#39; + dict.repr(self) + &#39;>&#39;
Nach dem Login kopieren

我们来使用一下我们自定义的加强版字典:

>>> s = Storage(a=1)
>>> s[&#39;a&#39;]
1
>>> s.a
1
>>> s.a = 2
>>> s[&#39;a&#39;]
2
>>> del s.a
>>> s.a
...
AttributeError: &#39;a&#39;
Nach dem Login kopieren

getitem

getitem用于通过下标[]的形式来获取对象中的元素,下面我们通过重写getitem来实现一个自己的list。

class MyList(object):
    def init(self, *args):
        self.numbers = args
    def getitem(self, item):
        return self.numbers[item]
my_list = MyList(1, 2, 3, 4, 6, 5, 3)
print my_list[2]
Nach dem Login kopieren

这个实现非常的简陋,不支持slice和step等功能,请读者自行改进,这里我就不重复了。

应用

下面是参考requests库中对于getitem的一个使用,我们定制了一个忽略属性大小写的字典类。

程序有些复杂,我稍微解释一下:由于这里比较简单,没有使用描述符的需求,所以使用了@property装饰器来代替,lower_keys的功能是将实例字典中的键全部转换成小写并且存储在字典self._lower_keys中。重写了getitem方法,以后我们访问某个属性首先会将键转换为小写的方式,然后并不会直接访问实例字典,而是会访问字典self._lower_keys去查找。赋值/删除操作的时候由于实例字典会进行变更,为了保持self._lower_keys和实例字典同步,首先清除self._lower_keys的内容,以后我们重新查找键的时候再调用getitem的时候会重新新建一个self._lower_keys

class CaseInsensitiveDict(dict):
    @property
    def lower_keys(self):
        if not hasattr(self, &#39;_lower_keys&#39;) or not self._lower_keys:
            self._lower_keys = dict((k.lower(), k) for k in self.keys())
        return self._lower_keys
    def _clear_lower_keys(self):
        if hasattr(self, &#39;_lower_keys&#39;):
            self._lower_keys.clear()
    def contains(self, key):
        return key.lower() in self.lower_keys
    def getitem(self, key):
        if key in self:
            return dict.getitem(self, self.lower_keys[key.lower()])
    def setitem(self, key, value):
        dict.setitem(self, key, value)
        self._clear_lower_keys()
    def delitem(self, key):
        dict.delitem(self, key)
        self._lower_keys.clear()
    def get(self, key, default=None):
        if key in self:
            return self[key]
        else:
            return default
Nach dem Login kopieren

我们来调用一下这个类:

>>> d = CaseInsensitiveDict()
>>> d[&#39;ziwenxie&#39;] = &#39;ziwenxie&#39;
>>> d[&#39;ZiWenXie&#39;] = &#39;ZiWenXie&#39;
>>> print(d)
{&#39;ZiWenXie&#39;: &#39;ziwenxie&#39;, &#39;ziwenxie&#39;: &#39;ziwenxie&#39;}
>>> print(d[&#39;ziwenxie&#39;])
ziwenxie
# d[&#39;ZiWenXie&#39;] => d[&#39;ziwenxie&#39;]
>>> print(d[&#39;ZiWenXie&#39;])
ziwenxi
Nach dem Login kopieren

Das obige ist der detaillierte Inhalt vonEinführung in die Verwendung von Python-Deskriptoren für schwarze Magie. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage