Bei der Datenanalyse ist es häufig erforderlich, auf Daten aus Dateien im CSV-Format zuzugreifen und Daten in CSV-Dateien zu schreiben. Es ist sehr praktisch und problemlos, die Daten in der CSV-Datei direkt in den Diktattyp und den DataFrame einzulesen. Der folgende Code dient als Beispiel für Iris-Daten.
Code
# -*- coding: utf-8 -*- import csv with open('E:/iris.csv') as csvfile: reader = csv.DictReader(csvfile, fieldnames=None) # fieldnames默认为None,如果所读csv文件没有表头,则需要指定 list_1 = [e for e in reader] # 每行数据作为一个dict存入链表中 csvfile.close() print list_1[0]
Ausgabe
{'Petal.Length': '1.4', 'Sepal.Length': '5.1', 'Petal.Width': '0.2', 'Sepal.Width': '3.5', 'Species': 'setosa'}
Wenn jedes gelesene Datenelement separat verarbeitet werden muss und Die Datenmenge ist groß, daher wird empfohlen, sie vor dem Einfügen einzeln zu verarbeiten.
list_1 = list() for e in reader: list_1.append(your_func(e)) # your_func为每条数据的处理函数
Code
# 数据 data = [ {'Petal.Length': '1.4', 'Sepal.Length': '5.1', 'Petal.Width': '0.2', 'Sepal.Width': '3.5', 'Species': 'setosa'}, {'Petal.Length': '1.4', 'Sepal.Length': '4.9', 'Petal.Width': '0.2', 'Sepal.Width': '3', 'Species': 'setosa'}, {'Petal.Length': '1.3', 'Sepal.Length': '4.7', 'Petal.Width': '0.2', 'Sepal.Width': '3.2', 'Species': 'setosa'}, {'Petal.Length': '1.5', 'Sepal.Length': '4.6', 'Petal.Width': '0.2', 'Sepal.Width': '3.1', 'Species': 'setosa'} ] # 表头 header = ['Petal.Length', 'Sepal.Length', 'Petal.Width', 'Sepal.Width', 'Species'] print len(data) with open('E:/dst.csv', 'wb') as dstfile: #写入方式选择wb,否则有空行 writer = csv.DictWriter(dstfile, fieldnames=header) writer.writeheader() # 写入表头 writer.writerows(data) # 批量写入 dstfile.close()
Der obige Code schreibt die gesamten Daten in eine CSV-Datei Die Datenmenge ist groß. Wenn Sie in Echtzeit sehen möchten, wie viele Daten geschrieben wurden, können Sie die Writerows-Funktion verwenden.
Code
# 读取csv文件为DataFrame import pandas as pd dframe = pd.DataFrame.from_csv('E:/iris.csv')
Sie können es auch ein wenig drehen:
import csv import pandas as pd with open('E:/iris.csv') as csvfile: reader = csv.DictReader(csvfile, fieldnames=None) # fieldnames默认为None,如果所读csv文件没有表头,则需要指定 list_1 = [e for e in reader] # 每行数据作为一个dict存入链表中 csvfile.close() dfrme = pd.DataFrame.from_records(list_1)
dfrme.to_csv('E:/dst.csv', index=False) # 不要每行的编号
Das obige ist der detaillierte Inhalt vonDetaillierte Erläuterung der Python-Methode zum Lesen und Schreiben von Dateien im CSV-Format. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!