


Detaillierte Einführung in die Sparse-Speicherung und Konvertierung von Python-Sparse-Matrizen
In diesem Artikel werden hauptsächlich Python Sparse-Matrix-Sparse-Speicher- und Konvertierungsinformationen vorgestellt 🎜>
Die Speicherform spärlicher Matrizen
Bei der Lösung linearerfrom scipy import sparse
in den Bereichen Wissenschaft und Technik treten häufig viele große Matrizen auf Die Elemente in sind 0, daher spricht man von einer dünn besetzten Matrix. Die Verwendung des ndarray array von NumPy zum Speichern einer solchen Matrix führt zu einer Speicherverschwendung. Aufgrund der spärlichen Beschaffenheit der Matrix können Sie Speicherverbrauch sparen, indem Sie nur relevante Informationen über Elemente ungleich Null speichern. Darüber hinaus kann das Schreiben der Operation
Funktionfür diese spezielle Struktur der Matrix auch die Berechnungsgeschwindigkeit der Matrix verbessern. Die scipy.sparse-Bibliothek bietet mehrere Formate zur Darstellung dünnbesetzter Matrizen. Jedes Format hat unterschiedliche Verwendungszwecke, unter anderem eignen sich dok_matrix und lil_matrix zum schrittweisen Hinzufügen von Elementen. dok_matrix erbt von dict, das ein Wörterbuch verwendet, um die Elemente zu speichern, die in der Matrix nicht 0 sind: Der Schlüssel des Wörterbuchs ist ein Tupel, das das Element (Zeile, Spalte) speichert. Informationen, und sein entsprechender Wert ist der Elementwert, der sich in (Zeile, Spalte) in der Matrix befindet. Offensichtlich eignet sich die Sparse-Matrix im Wörterbuchformat sehr gut für Additions-, Lösch- und Zugriffsoperationen einzelner Elemente. Wird normalerweise verwendet, um schrittweise Elemente ungleich Null hinzuzufügen und dann in
andereFormate zu konvertieren, die schnelle Vorgänge unterstützen.
lil_matrix verwendet zwei Listen, um Nicht-Null-Elemente zu speichern. Daten speichert die Nicht-Null-Elemente in jeder Zeile und Zeilen speichert die Spalten, in denen sich die Nicht-Null-Elemente befinden. Dieses Format eignet sich auch hervorragend, um Elemente einzeln hinzuzufügen und schnell zeilenbezogene Daten abzurufen. coo_matrix verwendet drei Arrays Zeile, Spalte und Daten, um die Informationen von Elementen ungleich Null zu speichern. Die drei Arrays haben die gleiche Länge, row enthält die Zeile der Elemente, col enthält die Spalte der Elemente und data enthält den Wert des Elements. coo_matrix unterstützt den Zugriff, das Hinzufügen und das Löschen von Elementen nicht. Nach der Erstellung ist es fast unmöglich, Operationen oder Matrixoperationen darauf auszuführen, außer es in eine Matrix in anderen Formaten zu konvertieren.
a = sparse.dok_matrix((10, 5)) a[2:5, 3] = 1.0, 2.0, 3.0 print a.keys() print a.values()
[(2, 3), (3, 3), (4, 3)] [1.0, 2.0, 3.0]
Viele spärliche Matrixdaten werden in Dateien in diesem Format gespeichert. Beispielsweise kann eine CSV-Datei drei Spalten haben: „Benutzer-ID, Produkt-ID, Bewertungswert“. Nachdem die Daten mit numpy.loadtxt oder pandas.read_csv gelesen wurden, können sie über coo_matrix schnell in eine Sparse-Matrix konvertiert werden: Jede Zeile der Matrix entspricht einem Benutzer, jede Spalte entspricht einem Produkt und der Elementwert ist die Bewertung des Benutzers des Produkts.
b = sparse.lil_matrix((10, 5)) b[2, 3] = 1.0 b[3, 4] = 2.0 b[3, 2] = 3.0 print b.data print b.rows
[[] [] [1.0] [3.0, 2.0] [] [] [] [] [] []] [[] [] [3] [2, 4] [] [] [] [] [] []]
Wählen Sie aus persönlichen Operationen. coo_matrix wird ausgewählt, weil es sich um spärliche Matrixoperationen handelt. Wenn es jedoch nicht in anderen Formen gespeichert wird, ist die Komplexität zu hoch (Zeit und Raum). Eine Matrix von 1000*1000 dauert etwa 2 Stunden, ebenfalls fatal. Ich hatte keine andere Wahl, als an die Tripel des Dateneingabeformats in der Pajek-Software zu denken:
Also dachte ich daran, meine eigenen Daten in ähnliche Tripel zu verarbeiten! Das heißt „matrix“ –>“tupel dreifach“ –>“sparseMatrix2tuple“ –>“scipy.sparse“row = [2, 3, 3, 2] col = [3, 4, 2, 3] data = [1, 2, 3, 10] c = sparse.coo_matrix((data, (row, col)), shape=(5, 6)) print c.col, c.row, c.data print c.toarray()
Das obige ist der detaillierte Inhalt vonDetaillierte Einführung in die Sparse-Speicherung und Konvertierung von Python-Sparse-Matrizen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Aktivieren Sie die Pytorch -GPU -Beschleunigung am CentOS -System erfordert die Installation von CUDA-, CUDNN- und GPU -Versionen von Pytorch. Die folgenden Schritte führen Sie durch den Prozess: Cuda und Cudnn Installation Bestimmen Sie die CUDA-Version Kompatibilität: Verwenden Sie den Befehl nvidia-smi, um die von Ihrer NVIDIA-Grafikkarte unterstützte CUDA-Version anzuzeigen. Beispielsweise kann Ihre MX450 -Grafikkarte CUDA11.1 oder höher unterstützen. Download und installieren Sie Cudatoolkit: Besuchen Sie die offizielle Website von Nvidiacudatoolkit und laden Sie die entsprechende Version gemäß der höchsten CUDA -Version herunter und installieren Sie sie, die von Ihrer Grafikkarte unterstützt wird. Installieren Sie die Cudnn -Bibliothek:

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Minio-Objektspeicherung: Hochleistungs-Bereitstellung im Rahmen von CentOS System Minio ist ein hochleistungsfähiges, verteiltes Objektspeichersystem, das auf der GO-Sprache entwickelt wurde und mit Amazons3 kompatibel ist. Es unterstützt eine Vielzahl von Kundensprachen, darunter Java, Python, JavaScript und Go. In diesem Artikel wird kurz die Installation und Kompatibilität von Minio zu CentOS -Systemen vorgestellt. CentOS -Versionskompatibilitätsminio wurde in mehreren CentOS -Versionen verifiziert, einschließlich, aber nicht beschränkt auf: CentOS7.9: Bietet einen vollständigen Installationshandbuch für die Clusterkonfiguration, die Umgebungsvorbereitung, die Einstellungen von Konfigurationsdateien, eine Festplattenpartitionierung und Mini

Pytorch Distributed Training on CentOS -System erfordert die folgenden Schritte: Pytorch -Installation: Die Prämisse ist, dass Python und PIP im CentOS -System installiert sind. Nehmen Sie abhängig von Ihrer CUDA -Version den entsprechenden Installationsbefehl von der offiziellen Pytorch -Website ab. Für CPU-Schulungen können Sie den folgenden Befehl verwenden: PipinstallTorChTorChVisionTorChaudio Wenn Sie GPU-Unterstützung benötigen, stellen Sie sicher, dass die entsprechende Version von CUDA und CUDNN installiert ist und die entsprechende Pytorch-Version für die Installation verwenden. Konfiguration der verteilten Umgebung: Verteiltes Training erfordert in der Regel mehrere Maschinen oder mehrere Maschinen-Mehrfach-GPUs. Ort

Bei der Installation von PyTorch am CentOS -System müssen Sie die entsprechende Version sorgfältig auswählen und die folgenden Schlüsselfaktoren berücksichtigen: 1. Kompatibilität der Systemumgebung: Betriebssystem: Es wird empfohlen, CentOS7 oder höher zu verwenden. CUDA und CUDNN: Pytorch -Version und CUDA -Version sind eng miteinander verbunden. Beispielsweise erfordert Pytorch1.9.0 CUDA11.1, während Pytorch2.0.1 CUDA11.3 erfordert. Die Cudnn -Version muss auch mit der CUDA -Version übereinstimmen. Bestimmen Sie vor der Auswahl der Pytorch -Version unbedingt, dass kompatible CUDA- und CUDNN -Versionen installiert wurden. Python -Version: Pytorch Official Branch

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.
