Heim > Backend-Entwicklung > PHP-Tutorial > Empfohlene 10 Artikel zur PHP-Funktion sqrt()

Empfohlene 10 Artikel zur PHP-Funktion sqrt()

怪我咯
Freigeben: 2023-03-08 22:46:01
Original
2395 Leute haben es durchsucht

Der Quadratwurzel-Algorithmus (Quadratwurzel) in Java ist eine gängige mathematische Formel in der Mathematik. Die Verwendung eines Programms zum Finden von Quadratwurzeln ist hauptsächlich in zwei Schritte unterteilt: Der erste Schritt: while()-Schleife , Kontrollieren Sie die Anzahl der Schleifen und die Anzahl der Dezimalstellen, um Endlosschleifen und mehrere Dezimalstellen zu verhindern: Durch Zerlegen der Quadratwurzel, schrittweises Reduzieren und Annäherung an die Quadratwurzel können auf ähnliche Weise auch andere Quadratwurzeln verwendet werden Ähnlich erweitert, es sollte jedoch beachtet werden, dass gerade Zahlen die Quadratwurzel sicherstellen müssen, dass die Eingabe eine positive Zahl ist. Die ungerade Anzahl von Quadratwurzeln muss in eine positive Zahl umgewandelt werden, um sicherzustellen, dass die Schleife konvergiert, und dann das Ergebnis wird als positiv oder negativ beurteilt; der Code lautet wie folgt: /* * Algorithmen.java * * Erstellt am: 03.12.2013 * Autorin: Wendy */&nbs

1. Java-Code-Demonstration für Quadratwurzel (sqrt)

Empfohlene 10 Artikel zur PHP-Funktion sqrt()

Einführung: In diesem Artikel werden hauptsächlich relevante Informationen zur detaillierten Erklärung des Quadratwurzelalgorithmus (sqrt) in Java vorgestellt. Freunde in Not können sich auf

2 beziehen. Der Unterschied zwischen Modulimport und -import

Empfohlene 10 Artikel zur PHP-Funktion sqrt()

Einführung: Ich verwende Codecademy, um Python zu lernen Kürzlich bin ich auf einige gestoßen. Bitte notieren Sie sie kurz. Wenn Sie sie verwenden, müssen Sie sqrt nur direkt aus math import sqrt importieren. Und wenn es sich beim Import um Import Math handelt, muss beim Aufruf die Methode math.sqrt verwendet werden. Was ist, wenn Sie eine Funktion mit demselben Namen in Ihrer eigenen Datei definieren? Lassen Sie uns mit Mathematik experimentieren ...

3. Verwenden Sie die Halbierungsmethode. Finden Sie die Quadratwurzel.

Empfohlene 10 Artikel zur PHP-Funktion sqrt()

Einführung: Verwenden Sie die Halbierungsmethode, um die Quadratwurzel zu ermitteln. def sqrtBI(x, epsilon): affirm x>0, 'X muss nicht-nagtiv sein, nicht ' + str..

4 . Wie berechnet man die n-te Potenz in PHP?

Einführung: PHP hat die Quadratwurzelfunktion sqrt(), aber jetzt möchte ich die 1,2-te Potenz einer Zahl öffnen. Gibt es eine gute Möglichkeit? Kann man eine Funktion nur selbst schreiben?

5. undefinierte Referenz auf libiconv_open c++ undefinierte Referenz auf sqrt undefinierte Referenz auf mai

Einführung: Referenz ,undefiniert: undefinierter Verweis auf libiconv_open:ext/iconv/.libs/iconv.o: In Funktion `php_iconv_stream_filter_ctor':/home/king/php-5.2.13/ext/iconv/iconv.c:2491: undefinierter Verweis auf ` libiconv_open'collect2: ld hat 1 Exit-Statusmake zurückgegeben:

6. PHP ermittelt, ob es sich um eine Primzahl handelt

Einführung: PHP ermittelt, ob es sich um eine Primzahl handelt: Bestimmen Sie, ob es sich um eine Primzahl handelt. Functionchecknumber($number){for($i=2;$i<=sqrt($number);$i++){if( $ Zahl%$i==0){return0;}return1; }}').addClass('pre-numbering').hide();$(this).addClass('has-numbering').parent(

7. Zwei Zahlen sind Primzahlen und das Produkt der beiden Zahlen ist 217. Wie gehe ich mit diesen beiden Zahlen um?

Einführung: Zwei Zahlen sind Primzahlen und die Das Produkt der beiden Zahlen ist 217. Finden Sie Folgendes: Zwei Zahlen sind Primzahlen und das Produkt der beiden Zahlen ist 217. Finden Sie die beiden Zahlen ------ Lösung ------ Faktorisierung (Sieb) Französisch) PHP Code Funktion Factorization($num) { $end = sqrt($num); $k = 1; for($i=2; $i<=$end; $i+=$k,$

8. Backtracking-Methode zur Lösung von Labyrinthproblemen

Einführung: Einführung in die Backtracking-Methode zur Lösung von Labyrinthproblemen. Einige davon sahen sehr einfach und häufig verwendet aus, aber ich konnte zum Beispiel nicht herausfinden, wie man sie löst : Implementieren Sie die Funktion sqrt und ermitteln Sie die Anordnung des Arrays. Wenn Sie nicht gut in fortgeschrittener Mathematik sind, werden diese scheinbar einfachen Probleme beim ersten Mal schwer zu lösen sein. Natürlich werden wir heute über ein solches Problem sprechen, wie man alle Lösungen dafür löst Labyrinth. Wie man dieses Problem löst Wenn Sie diese Idee nicht verstehen, werden viele etwas kompliziertere Probleme schwierig sein

9 🎜>Zwei Zahlen sind Primzahlen und das Produkt der beiden Zahlen ist 217. Finden Sie heraus, wie man mit diesen beiden Zahlen umgeht

Einführung: Zwei Zahlen sind Primzahlen und Das Produkt der beiden Zahlen ist 217. Finden Sie diese beiden Zahlen. Die beiden Zahlen sind Primzahlen und das Produkt der beiden Zahlen ist 217. Finden Sie diese beiden Zahlen------Lösung-------- ------------Faktorisierung (Siebmethode)PHP-Codefunktion Factorization($num) { $end = sqrt($num); for($i=2; $i<= $end; $i+=$k,$k=2)

10. Webseiten-Farbanpassungscode

Einführung: ec(2);

n"; für ($x=0;$x<16;$x++) { $abs00=sqrt(($x*$x)+

[Verwandte Q&A-Empfehlungen]:

android – Über die Pixeldichte von Mobiltelefonen Frage

Javascript – Wie wird die Anzeige von Latexformeln auf der Website unterstützt?

Android6.0-Methode veraltet

html – Über den Javascript-Schreibrechner

c++ – Eine Frage zum Effizienzvergleich des Quadratwurzel-Reziprok-Algorithmus

Das obige ist der detaillierte Inhalt vonEmpfohlene 10 Artikel zur PHP-Funktion sqrt(). Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Aktuelle Ausgaben
PHP-Datenerfassung?
Aus 1970-01-01 08:00:00
0
0
0
PHP-Erweiterung intl
Aus 1970-01-01 08:00:00
0
0
0
Wie man PHP gut lernt
Aus 1970-01-01 08:00:00
0
0
0
Mehrere PHP-Versionen
Aus 1970-01-01 08:00:00
0
0
0
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage