


Detaillierte Erklärung von Metaklassen und ihrer Verwendung in Python
1. Verwenden Sie die Metaklasse, um Unterklassen zu überprüfen.
Immer wenn wir eine neue Klasse definieren, führt die Metaklasse Yazheng-Code aus, um sicherzustellen, dass die neue Klasse den angegebenen Spezifikationen entspricht.
Nachdem das Python-System die Klassenanweisung der Unterklasse verarbeitet hat, ruft es die Methode __new__
der Metaklasse auf. Die Metaklasse kann den Namen, die übergeordnete Klasse und die Attribute der Unterklasse und der Enkelklasse über die Methode __new__
abrufen.
Dadurch entfällt für uns die Notwendigkeit, den Verifizierungscode in die __init__
-Methode dieser Klasse einzufügen und mit der Verifizierung zu warten, bis das Objekt erstellt ist.
Im folgenden Beispiel wird eine Unterklasse mit weniger als 3 Kanten definiert. Sobald die Klassenanweisung endet, lehnt der Metaklassen-Verifizierungscode die Klasse ab.
class ValidatePolygon(type): def __new__(meta, name, bases, class_dict): # Don't validate the abstract Polygon class if bases != (object,): if class_dict['sides'] < 3: raise ValueError('Polygons need 3+ sides') return type.__new__(meta, name, bases, class_dict) class Polygon(object, metaclass=ValidatePolygon): sides = None # Specified by subclasses @classmethod def interior_angles(cls): return (cls.sides - 2) * 180 class Triangle(Polygon): sides = 3 print(Triangle.interior_angles())
2. Registrieren Sie Unterklassen mit Metaklassen
Jedes Mal, wenn Sie eine Unterklasse von einer Basisklasse erben, kann die Metaklasse der Basisklasse den Registrierungscode automatisch ausführen.
Dies ist nützlich, wenn eine „Reverse-Lookup“ erforderlich ist, um eine Zuordnung zwischen einem einfachen Bezeichner und der entsprechenden Klasse herzustellen.
Was noch verwendet wird, ist, dass nach der Ausführung der Klassenanweisung automatisch die Methode __new__
der Metaklasse aufgerufen wird.
import json registry = {} def register_class(target_class): registry[target_class.__name__] = target_class def deserialize(data): params = json.loads(data) name = params['class'] target_class = registry[name] return target_class(*params['args']) class Meta(type): def __new__(meta, name, bases, class_dict): cls = type.__new__(meta, name, bases, class_dict) register_class(cls) return cls class Serializable(object): def __init__(self, *args): self.args = args def serialize(self): return json.dumps({ 'class': self.__class__.__name__, 'args': self.args, }) def __repr__(self): return '%s(%s)' % ( self.__class__.__name__, ', '.join(str(x) for x in self.args)) class RegisteredSerializable(Serializable, metaclass=Meta): pass class Vector3D(RegisteredSerializable): def __init__(self, x, y, z): super().__init__(x, y, z) self.x, self.y, self.z = x, y, z v3 = Vector3D(10, -7, 3) print('Before: ', v3) data = v3.serialize() print('Serialized:', data) print('After: ', deserialize(data)) print(registry)
3. Verwenden Sie Metaklassen, um Klassenattribute zu kommentieren.
Die Verwendung von Metaklassen ist wie das Platzieren eines Hooks in der Klassenanweisung. Nachdem die Klassenanweisung verarbeitet wurde, wird der Hook sofort ausgelöst.
Die folgenden Sätze Filed.name
und Filed.name
mithilfe von Metaklassen.
class Field(object): def __init__(self): # These will be assigned by the metaclass. self.name = None self.internal_name = None def __get__(self, instance, instance_type): if instance is None: return self return getattr(instance, self.internal_name, '') def __set__(self, instance, value): setattr(instance, self.internal_name, value) class Meta(type): def __new__(meta, name, bases, class_dict): for key, value in class_dict.items(): if isinstance(value, Field): value.name = key value.internal_name = '_' + key cls = type.__new__(meta, name, bases, class_dict) return cls class DatabaseRow(object, metaclass=Meta): pass class BetterCustomer(DatabaseRow): first_name = Field() last_name = Field() prefix = Field() suffix = Field() foo = BetterCustomer() print('Before:', repr(foo.first_name), foo.__dict__) foo.first_name = 'Euler' print('After: ', repr(foo.first_name), foo.__dict__)
Das war's mit der Metaklassen-Zusammenfassung, und ich verstehe sie nicht ganz.
Ich hoffe, dass Python-Benutzer, die ein tiefes Verständnis dafür haben, eine Nachricht hinterlassen können.
Code von:
Das obige ist der detaillierte Inhalt vonDetaillierte Erklärung von Metaklassen und ihrer Verwendung in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Aktivieren Sie die Pytorch -GPU -Beschleunigung am CentOS -System erfordert die Installation von CUDA-, CUDNN- und GPU -Versionen von Pytorch. Die folgenden Schritte führen Sie durch den Prozess: Cuda und Cudnn Installation Bestimmen Sie die CUDA-Version Kompatibilität: Verwenden Sie den Befehl nvidia-smi, um die von Ihrer NVIDIA-Grafikkarte unterstützte CUDA-Version anzuzeigen. Beispielsweise kann Ihre MX450 -Grafikkarte CUDA11.1 oder höher unterstützen. Download und installieren Sie Cudatoolkit: Besuchen Sie die offizielle Website von Nvidiacudatoolkit und laden Sie die entsprechende Version gemäß der höchsten CUDA -Version herunter und installieren Sie sie, die von Ihrer Grafikkarte unterstützt wird. Installieren Sie die Cudnn -Bibliothek:

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Minio-Objektspeicherung: Hochleistungs-Bereitstellung im Rahmen von CentOS System Minio ist ein hochleistungsfähiges, verteiltes Objektspeichersystem, das auf der GO-Sprache entwickelt wurde und mit Amazons3 kompatibel ist. Es unterstützt eine Vielzahl von Kundensprachen, darunter Java, Python, JavaScript und Go. In diesem Artikel wird kurz die Installation und Kompatibilität von Minio zu CentOS -Systemen vorgestellt. CentOS -Versionskompatibilitätsminio wurde in mehreren CentOS -Versionen verifiziert, einschließlich, aber nicht beschränkt auf: CentOS7.9: Bietet einen vollständigen Installationshandbuch für die Clusterkonfiguration, die Umgebungsvorbereitung, die Einstellungen von Konfigurationsdateien, eine Festplattenpartitionierung und Mini

Pytorch Distributed Training on CentOS -System erfordert die folgenden Schritte: Pytorch -Installation: Die Prämisse ist, dass Python und PIP im CentOS -System installiert sind. Nehmen Sie abhängig von Ihrer CUDA -Version den entsprechenden Installationsbefehl von der offiziellen Pytorch -Website ab. Für CPU-Schulungen können Sie den folgenden Befehl verwenden: PipinstallTorChTorChVisionTorChaudio Wenn Sie GPU-Unterstützung benötigen, stellen Sie sicher, dass die entsprechende Version von CUDA und CUDNN installiert ist und die entsprechende Pytorch-Version für die Installation verwenden. Konfiguration der verteilten Umgebung: Verteiltes Training erfordert in der Regel mehrere Maschinen oder mehrere Maschinen-Mehrfach-GPUs. Ort

Bei der Installation von PyTorch am CentOS -System müssen Sie die entsprechende Version sorgfältig auswählen und die folgenden Schlüsselfaktoren berücksichtigen: 1. Kompatibilität der Systemumgebung: Betriebssystem: Es wird empfohlen, CentOS7 oder höher zu verwenden. CUDA und CUDNN: Pytorch -Version und CUDA -Version sind eng miteinander verbunden. Beispielsweise erfordert Pytorch1.9.0 CUDA11.1, während Pytorch2.0.1 CUDA11.3 erfordert. Die Cudnn -Version muss auch mit der CUDA -Version übereinstimmen. Bestimmen Sie vor der Auswahl der Pytorch -Version unbedingt, dass kompatible CUDA- und CUDNN -Versionen installiert wurden. Python -Version: Pytorch Official Branch

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.
