Zusammenfassung gängiger Methoden in NumPy
NumPy ist eine Open-Source-Erweiterung für numerische Berechnungen für Python. Mit diesem Tool können große Matrizen wesentlich effizienter gespeichert und verarbeitet werden als mit Pythons eigener verschachtelter Listenstruktur (die auch zur Darstellung von Matrizen verwendet werden kann). NumPy (Numeric Python) bietet viele fortschrittliche numerische Programmierwerkzeuge, wie z. B. Matrixdatentypen, Vektorverarbeitung und anspruchsvolle arithmetische Bibliotheken. Entwickelt für anspruchsvolles Zahlenrechnen. Es wird hauptsächlich von vielen großen Finanzunternehmen sowie wichtigen wissenschaftlichen Computerorganisationen wie Lawrence Livermore verwendet, und die NASA verwendet es, um einige Aufgaben zu erledigen, die ursprünglich mit C++, Fortran oder Matlab erledigt wurden.
Der Datentyp in Numpy, der Typ ndarray, unterscheidet sich von array.array in der Standardbibliothek.
Erstellung von ndarray
>>> import numpy as np >>> a = np.array([2,3,4]) >>> a array([2, 3, 4]) >>> a.dtype dtype('int64') >>> b = np.array([1.2, 3.5, 5.1]) >>> b.dtype dtype('float64')
Zweidimensionales Array
>>> b = np.array([(1.5,2,3), (4,5,6)]) >>> b array([[ 1.5, 2. , 3. ], [ 4. , 5. , 6. ]])
Geben Sie den Typ beim Erstellen an
>>> c = np.array( [ [1,2], [3,4] ], dtype=complex ) >>> c array([[ 1.+0.j, 2.+0.j], [ 3.+0.j, 4.+0.j]])
Erstellen Sie einige spezielle Matrizen
>>> np.zeros( (3,4) ) array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]]) >>> np.ones( (2,3,4), dtype=np.int16 ) # dtype can also be specified array([[[ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1]], [[ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1]]], dtype=int16) >>> np.empty( (2,3) ) # uninitialized, output may vary array([[ 3.73603959e-262, 6.02658058e-154, 6.55490914e-260], [ 5.30498948e-313, 3.14673309e-307, 1.00000000e+000]])
Erstellen Sie einige Matrizen mit spezifischen Regeln
>>> np.arange( 10, 30, 5 ) array([10, 15, 20, 25]) >>> np.arange( 0, 2, 0.3 ) # it accepts float arguments array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8]) >>> from numpy import pi >>> np.linspace( 0, 2, 9 ) # 9 numbers from 0 to 2 array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ]) >>> x = np.linspace( 0, 2*pi, 100 ) # useful to evaluate function at lots of points >>> f = np.sin(x)
Einige Grundoperationen
Logische Operationen für Addition, Subtraktion, Multiplikation und Division trigonometrischer Funktionen
>>> a = np.array( [20,30,40,50] ) >>> b = np.arange( 4 ) >>> b array([0, 1, 2, 3]) >>> c = a-b >>> c array([20, 29, 38, 47]) >>> b**2 array([0, 1, 4, 9]) >>> 10*np.sin(a) array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854]) >>> a<35 array([ True, True, False, False], dtype=bool)
Matrixoperationen
In Matlab gibt es .*, ./ usw.
Wenn Sie in Numpy jedoch +, -, ×, / verwenden, besteht die Priorität darin, eine Addition durchzuführen. Subtraktion, Multiplikation und Division zwischen jedem Punkt Methode
Wenn zwei Matrizen (quadratische Matrizen) sowohl Operationen zwischen Elementen als auch Matrixoperationen ausführen können, wird die Operation zwischen Elementen zuerst ausgeführt
>>> import numpy as np >>> A = np.arange(10,20) >>> B = np.arange(20,30) >>> A + B array([30, 32, 34, 36, 38, 40, 42, 44, 46, 48]) >>> A * B array([200, 231, 264, 299, 336, 375, 416, 459, 504, 551]) >>> A / B array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) >>> B / A array([2, 1, 1, 1, 1, 1, 1, 1, 1, 1])
Wenn die Matrix ausgeführt werden muss, handelt es sich bei Operationen im Allgemeinen um Matrixmultiplikationsoperationen
>>> A = np.array([1,1,1,1]) >>> B = np.array([2,2,2,2]) >>> A.reshape(2,2) array([[1, 1], [1, 1]]) >>> B.reshape(2,2) array([[2, 2], [2, 2]]) >>> A * B array([2, 2, 2, 2]) >>> np.dot(A,B) 8 >>> A.dot(B) 8
Einige häufig verwendete globale Funktionen
>>> B = np.arange(3) >>> B array([0, 1, 2]) >>> np.exp(B) array([ 1. , 2.71828183, 7.3890561 ]) >>> np.sqrt(B) array([ 0. , 1. , 1.41421356]) >>> C = np.array([2., -1., 4.]) >>> np.add(B, C) array([ 2., 0., 6.])
Matrix-Index-Slice-Traversierung
>>> a = np.arange(10)**3 >>> a array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]) >>> a[2] 8 >>> a[2:5] array([ 8, 27, 64]) >>> a[:6:2] = -1000 # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000 >>> a array([-1000, 1, -1000, 27, -1000, 125, 216, 343, 512, 729]) >>> a[ : :-1] # reversed a array([ 729, 512, 343, 216, 125, -1000, 27, -1000, 1, -1000]) >>> for i in a: ... print(i**(1/3.)) ... nan 1.0 nan 3.0 nan 5.0 6.0 7.0 8.0 9.0
Matrix Durchquerung
>>> import numpy as np >>> b = np.arange(16).reshape(4, 4) >>> for row in b: ... print(row) ... [0 1 2 3] [4 5 6 7] [ 8 9 10 11] [12 13 14 15] >>> for node in b.flat: ... print(node) ... 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Spezielle Operationen von Matrizen
Ändern Sie die Form der Matrix – Umformen
>>> a = np.floor(10 * np.random.random((3,4))) >>> a array([[ 6., 5., 1., 5.], [ 5., 5., 8., 9.], [ 5., 5., 9., 7.]]) >>> a.ravel() array([ 6., 5., 1., 5., 5., 5., 8., 9., 5., 5., 9., 7.]) >>> a array([[ 6., 5., 1., 5.], [ 5., 5., 8., 9.], [ 5., 5., 9., 7.]])
Der Unterschied zwischen Größenänderung und Umformen
Durch die Größenänderung wird die ursprüngliche Matrix geändert. Durch die Neuformung werden keine
>>> a array([[ 6., 5., 1., 5.], [ 5., 5., 8., 9.], [ 5., 5., 9., 7.]]) >>> a.reshape(2,-1) array([[ 6., 5., 1., 5., 5., 5.], [ 8., 9., 5., 5., 9., 7.]]) >>> a array([[ 6., 5., 1., 5.], [ 5., 5., 8., 9.], [ 5., 5., 9., 7.]]) >>> a.resize(2,6) >>> a array([[ 6., 5., 1., 5., 5., 5.], [ 8., 9., 5., 5., 9., 7.]])
Matrizen
>>> a = np.floor(10*np.random.random((2,2))) >>> a array([[ 8., 8.], [ 0., 0.]]) >>> b = np.floor(10*np.random.random((2,2))) >>> b array([[ 1., 8.], [ 0., 4.]]) >>> np.vstack((a,b)) array([[ 8., 8.], [ 0., 0.], [ 1., 8.], [ 0., 4.]]) >>> np.hstack((a,b)) array([[ 8., 8., 1., 8.], [ 0., 0., 0., 4.]])
Das obige ist der detaillierte Inhalt vonZusammenfassung gängiger Methoden in NumPy. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Numpy ist eine wichtige Mathematikbibliothek in Python. Sie bietet effiziente Array-Operationen und wissenschaftliche Berechnungsfunktionen und wird häufig in den Bereichen Datenanalyse, maschinelles Lernen, Deep Learning und anderen Bereichen verwendet. Bei der Verwendung von Numpy müssen wir häufig die Versionsnummer von Numpy überprüfen, um die von der aktuellen Umgebung unterstützten Funktionen zu ermitteln. In diesem Artikel erfahren Sie, wie Sie die Numpy-Version schnell überprüfen und spezifische Codebeispiele bereitstellen. Methode 1: Verwenden Sie das __version__-Attribut, das mit numpy geliefert wird. Das numpy-Modul wird mit einem __ geliefert.

So aktualisieren Sie die Numpy-Version: Leicht verständliches Tutorial, erfordert konkrete Codebeispiele. Einführung: NumPy ist eine wichtige Python-Bibliothek für wissenschaftliche Berechnungen. Es bietet ein leistungsstarkes mehrdimensionales Array-Objekt und eine Reihe verwandter Funktionen, mit denen effiziente numerische Operationen ausgeführt werden können. Mit der Veröffentlichung neuer Versionen stehen uns ständig neuere Funktionen und Fehlerbehebungen zur Verfügung. In diesem Artikel wird beschrieben, wie Sie Ihre installierte NumPy-Bibliothek aktualisieren, um die neuesten Funktionen zu erhalten und bekannte Probleme zu beheben. Schritt 1: Überprüfen Sie zu Beginn die aktuelle NumPy-Version

Bringen Sie Ihnen Schritt für Schritt bei, NumPy in PyCharm zu installieren und seine leistungsstarken Funktionen vollständig zu nutzen. Vorwort: NumPy ist eine der grundlegenden Bibliotheken für wissenschaftliches Rechnen in Python. Sie bietet leistungsstarke mehrdimensionale Array-Objekte und verschiedene für die Ausführung erforderliche Funktionen Grundlegende Operationen an Arrays. Es ist ein wichtiger Bestandteil der meisten Data-Science- und Machine-Learning-Projekte. In diesem Artikel erfahren Sie, wie Sie NumPy in PyCharm installieren und seine leistungsstarken Funktionen anhand spezifischer Codebeispiele demonstrieren. Schritt 1: Installieren Sie zunächst PyCharm

Das Geheimnis der schnellen Deinstallation der NumPy-Bibliothek wird gelüftet. Es sind spezifische Codebeispiele erforderlich. NumPy ist eine leistungsstarke Python-Bibliothek für wissenschaftliches Rechnen, die in Bereichen wie Datenanalyse, wissenschaftlichem Rechnen und maschinellem Lernen weit verbreitet ist. Manchmal müssen wir jedoch möglicherweise die NumPy-Bibliothek deinstallieren, sei es zur Aktualisierung der Version oder aus anderen Gründen. In diesem Artikel werden einige Methoden zum schnellen Deinstallieren der NumPy-Bibliothek vorgestellt und spezifische Codebeispiele bereitgestellt. Methode 1: Verwenden Sie pip zum Deinstallieren. Pip ist ein Python-Paketverwaltungstool, das zum Installieren, Aktualisieren und Installieren verwendet werden kann

Numpy-Installationsanleitung: Ein Artikel zur Lösung von Installationsproblemen, spezifische Codebeispiele erforderlich. Einführung: Numpy ist eine leistungsstarke wissenschaftliche Computerbibliothek in Python. Sie bietet effiziente mehrdimensionale Array-Objekte und Tools für den Betrieb von Array-Daten. Bei Anfängern kann die Installation von Numpy jedoch zu Verwirrung führen. In diesem Artikel erhalten Sie eine Numpy-Installationsanleitung, die Ihnen hilft, Installationsprobleme schnell zu lösen. 1. Installieren Sie die Python-Umgebung: Bevor Sie Numpy installieren, müssen Sie zunächst sicherstellen, dass Py installiert ist.

Die NumPy-Bibliothek ist eine der wichtigsten Bibliotheken in Python für wissenschaftliches Rechnen und Datenanalyse. Manchmal müssen wir jedoch die NumPy-Bibliothek deinstallieren, vielleicht weil wir die Version aktualisieren oder Konflikte mit anderen Bibliotheken lösen müssen. In diesem Artikel erfahren Sie, wie Sie die NumPy-Bibliothek korrekt deinstallieren, um mögliche Konflikte und Fehler zu vermeiden, und demonstrieren den Vorgang anhand spezifischer Codebeispiele. Bevor wir mit der Deinstallation der NumPy-Bibliothek beginnen, müssen wir sicherstellen, dass das Pip-Tool installiert ist, da Pip das Paketverwaltungstool für Python ist.

Mit der rasanten Entwicklung von Bereichen wie Datenwissenschaft, maschinellem Lernen und Deep Learning hat sich Python zu einer Mainstream-Sprache für die Datenanalyse und -modellierung entwickelt. In Python ist NumPy (kurz für NumericalPython) eine sehr wichtige Bibliothek, da sie eine Reihe effizienter mehrdimensionaler Array-Objekte bereitstellt und die Grundlage für viele andere Bibliotheken wie Pandas, SciPy und Scikit-Learn bildet. Bei der Verwendung von NumPy werden Sie daher wahrscheinlich auf Kompatibilitätsprobleme zwischen verschiedenen Versionen stoßen

Detaillierte Erläuterung der Numpy-Slicing-Operationsmethode und praktische Anwendungsanleitung Einführung: Numpy ist eine der beliebtesten wissenschaftlichen Computerbibliotheken in Python und bietet leistungsstarke Array-Operationsfunktionen. Unter diesen ist der Slicing-Vorgang eine der am häufigsten verwendeten und leistungsstarken Funktionen in Numpy. In diesem Artikel wird die Slicing-Operationsmethode in Numpy ausführlich vorgestellt und die spezifische Verwendung der Slicing-Operation anhand eines praktischen Anwendungsleitfadens demonstriert. 1. Einführung in die Numpy-Slicing-Operationsmethode Die Numpy-Slicing-Operation bezieht sich auf das Erhalten einer Teilmenge eines Arrays durch Angabe eines Indexintervalls. Seine Grundform ist:
