Inhaltsverzeichnis
Erstellung von ndarray
Zweidimensionales Array
Geben Sie den Typ beim Erstellen an
Erstellen Sie einige spezielle Matrizen
Erstellen Sie einige Matrizen mit spezifischen Regeln
Einige Grundoperationen
Logische Operationen für Addition, Subtraktion, Multiplikation und Division trigonometrischer Funktionen
Matrixoperationen
Einige häufig verwendete globale Funktionen
Matrix-Index-Slice-Traversierung
Matrix Durchquerung
Spezielle Operationen von Matrizen
Ändern Sie die Form der Matrix – Umformen
Matrizen
Heim Backend-Entwicklung Python-Tutorial Zusammenfassung gängiger Methoden in NumPy

Zusammenfassung gängiger Methoden in NumPy

Aug 17, 2017 am 11:26 AM
numpy 常用 总结

NumPy ist eine Open-Source-Erweiterung für numerische Berechnungen für Python. Mit diesem Tool können große Matrizen wesentlich effizienter gespeichert und verarbeitet werden als mit Pythons eigener verschachtelter Listenstruktur (die auch zur Darstellung von Matrizen verwendet werden kann). NumPy (Numeric Python) bietet viele fortschrittliche numerische Programmierwerkzeuge, wie z. B. Matrixdatentypen, Vektorverarbeitung und anspruchsvolle arithmetische Bibliotheken. Entwickelt für anspruchsvolles Zahlenrechnen. Es wird hauptsächlich von vielen großen Finanzunternehmen sowie wichtigen wissenschaftlichen Computerorganisationen wie Lawrence Livermore verwendet, und die NASA verwendet es, um einige Aufgaben zu erledigen, die ursprünglich mit C++, Fortran oder Matlab erledigt wurden.

Der Datentyp in Numpy, der Typ ndarray, unterscheidet sich von array.array in der Standardbibliothek.

Erstellung von ndarray

>>> import numpy as np
>>> a = np.array([2,3,4])
>>> a
array([2, 3, 4])
>>> a.dtype
dtype('int64')
>>> b = np.array([1.2, 3.5, 5.1])
>>> b.dtype
dtype('float64')
Nach dem Login kopieren

Zweidimensionales Array

>>> b = np.array([(1.5,2,3), (4,5,6)])
>>> b
array([[ 1.5,  2. ,  3. ],
       [ 4. ,  5. ,  6. ]])
Nach dem Login kopieren

Geben Sie den Typ beim Erstellen an

>>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
>>> c
array([[ 1.+0.j,  2.+0.j],
       [ 3.+0.j,  4.+0.j]])
Nach dem Login kopieren

Erstellen Sie einige spezielle Matrizen

>>> np.zeros( (3,4) )
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])
>>> np.ones( (2,3,4), dtype=np.int16 )                # dtype can also be specified
array([[[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]],
       [[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]]], dtype=int16)
>>> np.empty( (2,3) )                                 # uninitialized, output may vary
array([[  3.73603959e-262,   6.02658058e-154,   6.55490914e-260],
       [  5.30498948e-313,   3.14673309e-307,   1.00000000e+000]])
Nach dem Login kopieren

Erstellen Sie einige Matrizen mit spezifischen Regeln

>>> np.arange( 10, 30, 5 )
array([10, 15, 20, 25])
>>> np.arange( 0, 2, 0.3 )                 # it accepts float arguments
array([ 0. ,  0.3,  0.6,  0.9,  1.2,  1.5,  1.8])
>>> from numpy import pi
>>> np.linspace( 0, 2, 9 )                 # 9 numbers from 0 to 2
array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ,  1.25,  1.5 ,  1.75,  2.  ])
>>> x = np.linspace( 0, 2*pi, 100 )        # useful to evaluate function at lots of points
>>> f = np.sin(x)
Nach dem Login kopieren

Einige Grundoperationen

Logische Operationen für Addition, Subtraktion, Multiplikation und Division trigonometrischer Funktionen

>>> a = np.array( [20,30,40,50] )
>>> b = np.arange( 4 )
>>> b
array([0, 1, 2, 3])
>>> c = a-b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10*np.sin(a)
array([ 9.12945251, -9.88031624,  7.4511316 , -2.62374854])
>>> a<35
array([ True, True, False, False], dtype=bool)
Nach dem Login kopieren

Matrixoperationen

In Matlab gibt es .*, ./ usw.

Wenn Sie in Numpy jedoch +, -, ×, / verwenden, besteht die Priorität darin, eine Addition durchzuführen. Subtraktion, Multiplikation und Division zwischen jedem Punkt Methode

Wenn zwei Matrizen (quadratische Matrizen) sowohl Operationen zwischen Elementen als auch Matrixoperationen ausführen können, wird die Operation zwischen Elementen zuerst ausgeführt

>>> import numpy as np
>>> A = np.arange(10,20)
>>> B = np.arange(20,30)
>>> A + B
array([30, 32, 34, 36, 38, 40, 42, 44, 46, 48])
>>> A * B
array([200, 231, 264, 299, 336, 375, 416, 459, 504, 551])
>>> A / B
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
>>> B / A
array([2, 1, 1, 1, 1, 1, 1, 1, 1, 1])
Nach dem Login kopieren

Wenn die Matrix ausgeführt werden muss, handelt es sich bei Operationen im Allgemeinen um Matrixmultiplikationsoperationen

>>> A = np.array([1,1,1,1])
>>> B = np.array([2,2,2,2])
>>> A.reshape(2,2)
array([[1, 1],
       [1, 1]])
>>> B.reshape(2,2)
array([[2, 2],
       [2, 2]])
>>> A * B
array([2, 2, 2, 2])
>>> np.dot(A,B)
8
>>> A.dot(B)
8
Nach dem Login kopieren

Einige häufig verwendete globale Funktionen

>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([ 1.        ,  2.71828183,  7.3890561 ])
>>> np.sqrt(B)
array([ 0.        ,  1.        ,  1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([ 2.,  0.,  6.])
Nach dem Login kopieren

Matrix-Index-Slice-Traversierung

>>> a = np.arange(10)**3
>>> a
array([  0,   1,   8,  27,  64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1000    # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000
>>> a
array([-1000,     1, -1000,    27, -1000,   125,   216,   343,   512,   729])
>>> a[ : :-1]                                 # reversed a
array([  729,   512,   343,   216,   125, -1000,    27, -1000,     1, -1000])
>>> for i in a:
...     print(i**(1/3.))
...
nan
1.0
nan
3.0
nan
5.0
6.0
7.0
8.0
9.0
Nach dem Login kopieren

Matrix Durchquerung

>>> import numpy as np
>>> b = np.arange(16).reshape(4, 4)
>>> for row in b:
...  print(row)
... 
[0 1 2 3]
[4 5 6 7]
[ 8  9 10 11]
[12 13 14 15]
>>> for node in b.flat:
...  print(node)
... 
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Nach dem Login kopieren

Spezielle Operationen von Matrizen

Ändern Sie die Form der Matrix – Umformen

>>> a = np.floor(10 * np.random.random((3,4)))
>>> a
array([[ 6.,  5.,  1.,  5.],
       [ 5.,  5.,  8.,  9.],
       [ 5.,  5.,  9.,  7.]])
>>> a.ravel()
array([ 6.,  5.,  1.,  5.,  5.,  5.,  8.,  9.,  5.,  5.,  9.,  7.])
>>> a
array([[ 6.,  5.,  1.,  5.],
       [ 5.,  5.,  8.,  9.],
       [ 5.,  5.,  9.,  7.]])
Nach dem Login kopieren

Der Unterschied zwischen Größenänderung und Umformen

Durch die Größenänderung wird die ursprüngliche Matrix geändert. Durch die Neuformung werden keine

>>> a
array([[ 6.,  5.,  1.,  5.],
       [ 5.,  5.,  8.,  9.],
       [ 5.,  5.,  9.,  7.]])
>>> a.reshape(2,-1)
array([[ 6.,  5.,  1.,  5.,  5.,  5.],
       [ 8.,  9.,  5.,  5.,  9.,  7.]])
>>> a
array([[ 6.,  5.,  1.,  5.],
       [ 5.,  5.,  8.,  9.],
       [ 5.,  5.,  9.,  7.]])
>>> a.resize(2,6)
>>> a
array([[ 6.,  5.,  1.,  5.,  5.,  5.],
       [ 8.,  9.,  5.,  5.,  9.,  7.]])
Nach dem Login kopieren

Matrizen

>>> a = np.floor(10*np.random.random((2,2)))
>>> a
array([[ 8.,  8.],
       [ 0.,  0.]])
>>> b = np.floor(10*np.random.random((2,2)))
>>> b
array([[ 1.,  8.],
       [ 0.,  4.]])
>>> np.vstack((a,b))
array([[ 8.,  8.],
       [ 0.,  0.],
       [ 1.,  8.],
       [ 0.,  4.]])
>>> np.hstack((a,b))
array([[ 8.,  8.,  1.,  8.],
       [ 0.,  0.,  0.,  4.]])
Nach dem Login kopieren
zusammengeführt

Das obige ist der detaillierte Inhalt vonZusammenfassung gängiger Methoden in NumPy. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
2 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Repo: Wie man Teamkollegen wiederbelebt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Abenteuer: Wie man riesige Samen bekommt
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

So überprüfen Sie schnell die Numpy-Version So überprüfen Sie schnell die Numpy-Version Jan 19, 2024 am 08:23 AM

Numpy ist eine wichtige Mathematikbibliothek in Python. Sie bietet effiziente Array-Operationen und wissenschaftliche Berechnungsfunktionen und wird häufig in den Bereichen Datenanalyse, maschinelles Lernen, Deep Learning und anderen Bereichen verwendet. Bei der Verwendung von Numpy müssen wir häufig die Versionsnummer von Numpy überprüfen, um die von der aktuellen Umgebung unterstützten Funktionen zu ermitteln. In diesem Artikel erfahren Sie, wie Sie die Numpy-Version schnell überprüfen und spezifische Codebeispiele bereitstellen. Methode 1: Verwenden Sie das __version__-Attribut, das mit numpy geliefert wird. Das numpy-Modul wird mit einem __ geliefert.

Numpy-Version aktualisieren: eine detaillierte und leicht verständliche Anleitung Numpy-Version aktualisieren: eine detaillierte und leicht verständliche Anleitung Feb 25, 2024 pm 11:39 PM

So aktualisieren Sie die Numpy-Version: Leicht verständliches Tutorial, erfordert konkrete Codebeispiele. Einführung: NumPy ist eine wichtige Python-Bibliothek für wissenschaftliche Berechnungen. Es bietet ein leistungsstarkes mehrdimensionales Array-Objekt und eine Reihe verwandter Funktionen, mit denen effiziente numerische Operationen ausgeführt werden können. Mit der Veröffentlichung neuer Versionen stehen uns ständig neuere Funktionen und Fehlerbehebungen zur Verfügung. In diesem Artikel wird beschrieben, wie Sie Ihre installierte NumPy-Bibliothek aktualisieren, um die neuesten Funktionen zu erhalten und bekannte Probleme zu beheben. Schritt 1: Überprüfen Sie zu Beginn die aktuelle NumPy-Version

Schritt-für-Schritt-Anleitung zur Installation von NumPy in PyCharm und zur optimalen Nutzung seiner Funktionen Schritt-für-Schritt-Anleitung zur Installation von NumPy in PyCharm und zur optimalen Nutzung seiner Funktionen Feb 18, 2024 pm 06:38 PM

Bringen Sie Ihnen Schritt für Schritt bei, NumPy in PyCharm zu installieren und seine leistungsstarken Funktionen vollständig zu nutzen. Vorwort: NumPy ist eine der grundlegenden Bibliotheken für wissenschaftliches Rechnen in Python. Sie bietet leistungsstarke mehrdimensionale Array-Objekte und verschiedene für die Ausführung erforderliche Funktionen Grundlegende Operationen an Arrays. Es ist ein wichtiger Bestandteil der meisten Data-Science- und Machine-Learning-Projekte. In diesem Artikel erfahren Sie, wie Sie NumPy in PyCharm installieren und seine leistungsstarken Funktionen anhand spezifischer Codebeispiele demonstrieren. Schritt 1: Installieren Sie zunächst PyCharm

Entdecken Sie die geheime Methode zur schnellen Deinstallation der NumPy-Bibliothek Entdecken Sie die geheime Methode zur schnellen Deinstallation der NumPy-Bibliothek Jan 26, 2024 am 08:32 AM

Das Geheimnis der schnellen Deinstallation der NumPy-Bibliothek wird gelüftet. Es sind spezifische Codebeispiele erforderlich. NumPy ist eine leistungsstarke Python-Bibliothek für wissenschaftliches Rechnen, die in Bereichen wie Datenanalyse, wissenschaftlichem Rechnen und maschinellem Lernen weit verbreitet ist. Manchmal müssen wir jedoch möglicherweise die NumPy-Bibliothek deinstallieren, sei es zur Aktualisierung der Version oder aus anderen Gründen. In diesem Artikel werden einige Methoden zum schnellen Deinstallieren der NumPy-Bibliothek vorgestellt und spezifische Codebeispiele bereitgestellt. Methode 1: Verwenden Sie pip zum Deinstallieren. Pip ist ein Python-Paketverwaltungstool, das zum Installieren, Aktualisieren und Installieren verwendet werden kann

Numpy-Installationsanleitung: Installationsprobleme in einem Artikel lösen Numpy-Installationsanleitung: Installationsprobleme in einem Artikel lösen Feb 21, 2024 pm 08:15 PM

Numpy-Installationsanleitung: Ein Artikel zur Lösung von Installationsproblemen, spezifische Codebeispiele erforderlich. Einführung: Numpy ist eine leistungsstarke wissenschaftliche Computerbibliothek in Python. Sie bietet effiziente mehrdimensionale Array-Objekte und Tools für den Betrieb von Array-Daten. Bei Anfängern kann die Installation von Numpy jedoch zu Verwirrung führen. In diesem Artikel erhalten Sie eine Numpy-Installationsanleitung, die Ihnen hilft, Installationsprobleme schnell zu lösen. 1. Installieren Sie die Python-Umgebung: Bevor Sie Numpy installieren, müssen Sie zunächst sicherstellen, dass Py installiert ist.

Anleitung zum Deinstallieren der NumPy-Bibliothek, um Konflikte und Fehler zu vermeiden Anleitung zum Deinstallieren der NumPy-Bibliothek, um Konflikte und Fehler zu vermeiden Jan 26, 2024 am 10:22 AM

Die NumPy-Bibliothek ist eine der wichtigsten Bibliotheken in Python für wissenschaftliches Rechnen und Datenanalyse. Manchmal müssen wir jedoch die NumPy-Bibliothek deinstallieren, vielleicht weil wir die Version aktualisieren oder Konflikte mit anderen Bibliotheken lösen müssen. In diesem Artikel erfahren Sie, wie Sie die NumPy-Bibliothek korrekt deinstallieren, um mögliche Konflikte und Fehler zu vermeiden, und demonstrieren den Vorgang anhand spezifischer Codebeispiele. Bevor wir mit der Deinstallation der NumPy-Bibliothek beginnen, müssen wir sicherstellen, dass das Pip-Tool installiert ist, da Pip das Paketverwaltungstool für Python ist.

Leitfaden zur Auswahl der Numpy-Version: Warum ein Upgrade? Leitfaden zur Auswahl der Numpy-Version: Warum ein Upgrade? Jan 19, 2024 am 09:34 AM

Mit der rasanten Entwicklung von Bereichen wie Datenwissenschaft, maschinellem Lernen und Deep Learning hat sich Python zu einer Mainstream-Sprache für die Datenanalyse und -modellierung entwickelt. In Python ist NumPy (kurz für NumericalPython) eine sehr wichtige Bibliothek, da sie eine Reihe effizienter mehrdimensionaler Array-Objekte bereitstellt und die Grundlage für viele andere Bibliotheken wie Pandas, SciPy und Scikit-Learn bildet. Bei der Verwendung von NumPy werden Sie daher wahrscheinlich auf Kompatibilitätsprobleme zwischen verschiedenen Versionen stoßen

Eingehende Analyse der Numpy-Slicing-Operationen und deren Anwendung im tatsächlichen Kampf Eingehende Analyse der Numpy-Slicing-Operationen und deren Anwendung im tatsächlichen Kampf Jan 26, 2024 am 08:52 AM

Detaillierte Erläuterung der Numpy-Slicing-Operationsmethode und praktische Anwendungsanleitung Einführung: Numpy ist eine der beliebtesten wissenschaftlichen Computerbibliotheken in Python und bietet leistungsstarke Array-Operationsfunktionen. Unter diesen ist der Slicing-Vorgang eine der am häufigsten verwendeten und leistungsstarken Funktionen in Numpy. In diesem Artikel wird die Slicing-Operationsmethode in Numpy ausführlich vorgestellt und die spezifische Verwendung der Slicing-Operation anhand eines praktischen Anwendungsleitfadens demonstriert. 1. Einführung in die Numpy-Slicing-Operationsmethode Die Numpy-Slicing-Operation bezieht sich auf das Erhalten einer Teilmenge eines Arrays durch Angabe eines Indexintervalls. Seine Grundform ist:

See all articles