Heim > Backend-Entwicklung > Python-Tutorial > Detailliertes Codebeispiel, wie Python die Matrixklasse implementiert

Detailliertes Codebeispiel, wie Python die Matrixklasse implementiert

黄舟
Freigeben: 2017-08-22 13:18:00
Original
3435 Leute haben es durchsucht

In diesem Artikel wird hauptsächlich die in Python implementierte Matrixklasse vorgestellt und die Definition, Berechnung, Konvertierung und andere verwandte Betriebsfähigkeiten der Python-Matrix in Form vollständiger Beispiele analysiert

Die Beispiele in diesem Artikel beschreiben die in Python implementierte Matrix-Klasse. Teilen Sie es als Referenz mit allen. Die Einzelheiten lauten wie folgt:

Wissenschaftliche Berechnungen sind untrennbar mit Matrixoperationen verbunden. Natürlich verfügt Python bereits über eine sehr gute vorgefertigte Bibliothek: numpy(Einfache Installation und Verwendung von numpy

Ich habe diese Matrixklasse geschrieben und hatte nicht die Absicht, sie neu zu erstellen it Das Rad ist nur eine Übung, die hier aufgezeichnet wurde.

Hinweis: Alle Funktionen dieser Klasse wurden noch nicht implementiert und werden langsam verbessert

Vollständiger Code:


import copy
class Matrix:
  '''矩阵类'''
  def __init__(self, row, column, fill=0.0):
    self.shape = (row, column)
    self.row = row
    self.column = column
    self._matrix = [[fill]*column for i in range(row)]
  # 返回元素m(i, j)的值: m[i, j]
  def __getitem__(self, index):
    if isinstance(index, int):
      return self._matrix[index-1]
    elif isinstance(index, tuple):
      return self._matrix[index[0]-1][index[1]-1]
  # 设置元素m(i,j)的值为s: m[i, j] = s
  def __setitem__(self, index, value):
    if isinstance(index, int):
      self._matrix[index-1] = copy.deepcopy(value)
    elif isinstance(index, tuple):
      self._matrix[index[0]-1][index[1]-1] = value
  def __eq__(self, N):
    '''相等'''
    # A == B
    assert isinstance(N, Matrix), "类型不匹配,不能比较"
    return N.shape == self.shape # 比较维度,可以修改为别的
  def __add__(self, N):
    '''加法'''
    # A + B
    assert N.shape == self.shape, "维度不匹配,不能相加"
    M = Matrix(self.row, self.column)
    for r in range(self.row):
      for c in range(self.column):
        M[r, c] = self[r, c] + N[r, c]
    return M
  def __sub__(self, N):
    '''减法'''
    # A - B
    assert N.shape == self.shape, "维度不匹配,不能相减"
    M = Matrix(self.row, self.column)
    for r in range(self.row):
      for c in range(self.column):
        M[r, c] = self[r, c] - N[r, c]
    return M
  def __mul__(self, N):
    '''乘法'''
    # A * B (或:A * 2.0)
    if isinstance(N, int) or isinstance(N,float):
      M = Matrix(self.row, self.column)
      for r in range(self.row):
        for c in range(self.column):
          M[r, c] = self[r, c]*N
    else:
      assert N.row == self.column, "维度不匹配,不能相乘"
      M = Matrix(self.row, N.column)
      for r in range(self.row):
        for c in range(N.column):
          sum = 0
          for k in range(self.column):
            sum += self[r, k] * N[k, r]
          M[r, c] = sum
    return M
  def __p__(self, N):
    '''除法'''
    # A / B
    pass
  def __pow__(self, k):
    '''乘方'''
    # A**k
    assert self.row == self.column, "不是方阵,不能乘方"
    M = copy.deepcopy(self)
    for i in range(k):
      M = M * self
    return M
  def rank(self):
    '''矩阵的秩'''
    pass
  def trace(self):
    '''矩阵的迹'''
    pass
  def adjoint(self):
    '''伴随矩阵'''
    pass
  def invert(self):
    '''逆矩阵'''
    assert self.row == self.column, "不是方阵"
    M = Matrix(self.row, self.column*2)
    I = self.identity() # 单位矩阵
    I.show()#############################
    # 拼接
    for r in range(1,M.row+1):
      temp = self[r]
      temp.extend(I[r])
      M[r] = copy.deepcopy(temp)
    M.show()#############################
    # 初等行变换
    for r in range(1, M.row+1):
      # 本行首元素(M[r, r])若为 0,则向下交换最近的当前列元素非零的行
      if M[r, r] == 0:
        for rr in range(r+1, M.row+1):
          if M[rr, r] != 0:
            M[r],M[rr] = M[rr],M[r] # 交换两行
          break
      assert M[r, r] != 0, '矩阵不可逆'
      # 本行首元素(M[r, r])化为 1
      temp = M[r,r] # 缓存
      for c in range(r, M.column+1):
        M[r, c] /= temp
        print("M[{0}, {1}] /= {2}".format(r,c,temp))
      M.show()
      # 本列上、下方的所有元素化为 0
      for rr in range(1, M.row+1):
        temp = M[rr, r] # 缓存
        for c in range(r, M.column+1):
          if rr == r:
            continue
          M[rr, c] -= temp * M[r, c]
          print("M[{0}, {1}] -= {2} * M[{3}, {1}]".format(rr, c, temp,r))
        M.show()
    # 截取逆矩阵
    N = Matrix(self.row,self.column)
    for r in range(1,self.row+1):
      N[r] = M[r][self.row:]
    return N
  def jieti(self):
    '''行简化阶梯矩阵'''
    pass
  def transpose(self):
    '''转置'''
    M = Matrix(self.column, self.row)
    for r in range(self.column):
      for c in range(self.row):
        M[r, c] = self[c, r]
    return M
  def cofactor(self, row, column):
    '''代数余子式(用于行列式展开)'''
    assert self.row == self.column, "不是方阵,无法计算代数余子式"
    assert self.row >= 3, "至少是3*3阶方阵"
    assert row <= self.row and column <= self.column, "下标超出范围"
    M = Matrix(self.column-1, self.row-1)
    for r in range(self.row):
      if r == row:
        continue
      for c in range(self.column):
        if c == column:
          continue
        rr = r-1 if r > row else r
        cc = c-1 if c > column else c
        M[rr, cc] = self[r, c]
    return M
  def det(self):
    &#39;&#39;&#39;计算行列式(determinant)&#39;&#39;&#39;
    assert self.row == self.column,"非行列式,不能计算"
    if self.shape == (2,2):
      return self[1,1]*self[2,2]-self[1,2]*self[2,1]
    else:
      sum = 0.0
      for c in range(self.column+1):
        sum += (-1)**(c+1)*self[1,c]*self.cofactor(1,c).det()
      return sum
  def zeros(self):
    &#39;&#39;&#39;全零矩阵&#39;&#39;&#39;
    M = Matrix(self.column, self.row, fill=0.0)
    return M
  def ones(self):
    &#39;&#39;&#39;全1矩阵&#39;&#39;&#39;
    M = Matrix(self.column, self.row, fill=1.0)
    return M
  def identity(self):
    &#39;&#39;&#39;单位矩阵&#39;&#39;&#39;
    assert self.row == self.column, "非n*n矩阵,无单位矩阵"
    M = Matrix(self.column, self.row)
    for r in range(self.row):
      for c in range(self.column):
        M[r, c] = 1.0 if r == c else 0.0
    return M
  def show(self):
    &#39;&#39;&#39;打印矩阵&#39;&#39;&#39;
    for r in range(self.row):
      for c in range(self.column):
        print(self[r+1, c+1],end=&#39; &#39;)
      print()
if __name__ == &#39;__main__&#39;:
  m = Matrix(3,3,fill=2.0)
  n = Matrix(3,3,fill=3.5)
  m[1] = [1.,1.,2.]
  m[2] = [1.,2.,1.]
  m[3] = [2.,1.,1.]
  p = m * n
  q = m*2.1
  r = m**3
  #r.show()
  #q.show()
  #print(p[1,1])
  #r = m.invert()
  #s = r*m
  print()
  m.show()
  print()
  #r.show()
  print()
  #s.show()
  print()
  print(m.det())
Nach dem Login kopieren

Das obige ist der detaillierte Inhalt vonDetailliertes Codebeispiel, wie Python die Matrixklasse implementiert. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage