Heim Backend-Entwicklung Python-Tutorial Beispiele zur Erläuterung der Python-Lösung für das Traveling Salesman Problem (TSP) basierend auf der Backtracking-Subset-Tree-Vorlage

Beispiele zur Erläuterung der Python-Lösung für das Traveling Salesman Problem (TSP) basierend auf der Backtracking-Subset-Tree-Vorlage

Sep 07, 2017 am 10:14 AM
python 回溯 bezogen auf

In diesem Artikel wird hauptsächlich Python zur Lösung des Problems des Handlungsreisenden (TSP) basierend auf der Teilmengenbaumvorlage der Backtracking-Methode vorgestellt. Er beschreibt kurz das Problem des Handlungsreisenden und analysiert die zugehörige Implementierung von Python mithilfe der Teilmengenbaumvorlage der Backtracking-Methode Schritte und Bedienungstipps finden Freunde in Not unter

Dieser Artikel beschreibt ein Beispiel für die Lösung des Travelling-Salesman-Problems (TSP) in Python basierend auf der Backtracking-Subset-Tree-Vorlage . Teilen Sie es als Referenz mit allen. Die Einzelheiten lauten wie folgt:

Problem

Das Travelling Salesman Problem (TSP) ist das Problem von Reiseverkäufer reisen in mehrere Städte, die Kosten zwischen den einzelnen Städten sind bekannt. Um Kosten zu sparen, beschloss der Reiseverkäufer, in der Stadt, in der er sich befand, einmal zu reisen und dann in die ursprüngliche Stadt zurückzukehren fragte ihn, welche Route er wählen sollte, um alle Orte zu erreichen. Die kürzesten Gesamtkosten zu Fuß?

Analyse

Dieses Problem kann wie folgt beschrieben werden: G=(V,E) ist gewichtet Suchen Sie für einen gerichteten Graphen einen gerichteten Ring, der jeden Knoten in V enthält, d. h. eine Reiseroute, die die Summe der Kosten aller Kanten auf diesem gerichteten Ring minimiert.

Der Unterschied zwischen dieser Frage und dem vorherigen Artikel http://www.jb51.net/article/122933.htm besteht darin, dass es sich bei dieser Frage um ein gewichtetes Bild handelt. Eine kleine Änderung genügt.

Die Länge der Lösung ist fest n+1.

Jeder Knoten im Diagramm hat seinen eigenen Nachbarknoten. Für einen Knoten bilden alle benachbarten Knoten den Zustandsraum des Knotens. Wenn der Pfad diesen Knoten erreicht, wird sein Zustandsraum durchlaufen.

Am Ende wird sich bestimmt die optimale Lösung finden

Natürlich gilt weiterhin die Backtracking-Subset-Tree-Vorlage! ! !

Code


'''旅行商问题(Traveling Salesman Problem,TSP)'''
# 用邻接表表示带权图
n = 5 # 节点数
a,b,c,d,e = range(n) # 节点名称
graph = [
  {b:7, c:6, d:1, e:3},
  {a:7, c:3, d:7, e:8},
  {a:6, b:3, d:12, e:11},
  {a:1, b:7, c:12, e:2},
  {a:3, b:8, c:11, d:2}
]
x = [0]*(n+1) # 一个解(n+1元数组,长度固定)
X = []     # 一组解
best_x = [0]*(n+1) # 已找到的最佳解(路径)
min_cost = 0    # 最小旅费
# 冲突检测
def conflict(k):
  global n,graph,x,best_x,min_cost
  # 第k个节点,是否前面已经走过
  if k < n and x[k] in x[:k]:
    return True
  # 回到出发节点
  if k == n and x[k] != x[0]:
    return True
  # 前面部分解的旅费之和超出已经找到的最小总旅费
  cost = sum([graph[node1][node2] for node1,node2 in zip(x[:k], x[1:k+1])])
  if 0 < min_cost < cost:
    return True
  return False # 无冲突
# 旅行商问题(TSP)
def tsp(k): # 到达(解x的)第k个节点
  global n,a,b,c,d,e,graph,x,X,min_cost,best_x
  if k > n: # 解的长度超出,已走遍n+1个节点 (若不回到出发节点,则 k==n)
    cost = sum([graph[node1][node2] for node1,node2 in zip(x[:-1], x[1:])]) # 计算总旅费
    if min_cost == 0 or cost < min_cost:
      best_x = x[:]
      min_cost = cost
      #print(x)
  else:
    for node in graph[x[k-1]]: # 遍历节点x[k-1]的邻接节点(状态空间)
      x[k] = node
      if not conflict(k): # 剪枝
        tsp(k+1)
# 测试
x[0] = c # 出发节点:路径x的第一个节点(随便哪个)
tsp(1)  # 开始处理解x中的第2个节点
print(best_x)
print(min_cost)
Nach dem Login kopieren

Rendering

Das obige ist der detaillierte Inhalt vonBeispiele zur Erläuterung der Python-Lösung für das Traveling Salesman Problem (TSP) basierend auf der Backtracking-Subset-Tree-Vorlage. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Crossplay haben?
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

PHP und Python: Code Beispiele und Vergleich PHP und Python: Code Beispiele und Vergleich Apr 15, 2025 am 12:07 AM

PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Python gegen JavaScript: Community, Bibliotheken und Ressourcen Python gegen JavaScript: Community, Bibliotheken und Ressourcen Apr 15, 2025 am 12:16 AM

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Wie ist die GPU -Unterstützung für Pytorch bei CentOS? Wie ist die GPU -Unterstützung für Pytorch bei CentOS? Apr 14, 2025 pm 06:48 PM

Aktivieren Sie die Pytorch -GPU -Beschleunigung am CentOS -System erfordert die Installation von CUDA-, CUDNN- und GPU -Versionen von Pytorch. Die folgenden Schritte führen Sie durch den Prozess: Cuda und Cudnn Installation Bestimmen Sie die CUDA-Version Kompatibilität: Verwenden Sie den Befehl nvidia-smi, um die von Ihrer NVIDIA-Grafikkarte unterstützte CUDA-Version anzuzeigen. Beispielsweise kann Ihre MX450 -Grafikkarte CUDA11.1 oder höher unterstützen. Download und installieren Sie Cudatoolkit: Besuchen Sie die offizielle Website von Nvidiacudatoolkit und laden Sie die entsprechende Version gemäß der höchsten CUDA -Version herunter und installieren Sie sie, die von Ihrer Grafikkarte unterstützt wird. Installieren Sie die Cudnn -Bibliothek:

Detaillierte Erklärung des Docker -Prinzips Detaillierte Erklärung des Docker -Prinzips Apr 14, 2025 pm 11:57 PM

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Miniopen CentOS -Kompatibilität Miniopen CentOS -Kompatibilität Apr 14, 2025 pm 05:45 PM

Minio-Objektspeicherung: Hochleistungs-Bereitstellung im Rahmen von CentOS System Minio ist ein hochleistungsfähiges, verteiltes Objektspeichersystem, das auf der GO-Sprache entwickelt wurde und mit Amazons3 kompatibel ist. Es unterstützt eine Vielzahl von Kundensprachen, darunter Java, Python, JavaScript und Go. In diesem Artikel wird kurz die Installation und Kompatibilität von Minio zu CentOS -Systemen vorgestellt. CentOS -Versionskompatibilitätsminio wurde in mehreren CentOS -Versionen verifiziert, einschließlich, aber nicht beschränkt auf: CentOS7.9: Bietet einen vollständigen Installationshandbuch für die Clusterkonfiguration, die Umgebungsvorbereitung, die Einstellungen von Konfigurationsdateien, eine Festplattenpartitionierung und Mini

Wie man eine verteilte Schulung von Pytorch auf CentOS betreibt Wie man eine verteilte Schulung von Pytorch auf CentOS betreibt Apr 14, 2025 pm 06:36 PM

Pytorch Distributed Training on CentOS -System erfordert die folgenden Schritte: Pytorch -Installation: Die Prämisse ist, dass Python und PIP im CentOS -System installiert sind. Nehmen Sie abhängig von Ihrer CUDA -Version den entsprechenden Installationsbefehl von der offiziellen Pytorch -Website ab. Für CPU-Schulungen können Sie den folgenden Befehl verwenden: PipinstallTorChTorChVisionTorChaudio Wenn Sie GPU-Unterstützung benötigen, stellen Sie sicher, dass die entsprechende Version von CUDA und CUDNN installiert ist und die entsprechende Pytorch-Version für die Installation verwenden. Konfiguration der verteilten Umgebung: Verteiltes Training erfordert in der Regel mehrere Maschinen oder mehrere Maschinen-Mehrfach-GPUs. Ort

So wählen Sie die Pytorch -Version auf CentOS aus So wählen Sie die Pytorch -Version auf CentOS aus Apr 14, 2025 pm 06:51 PM

Bei der Installation von PyTorch am CentOS -System müssen Sie die entsprechende Version sorgfältig auswählen und die folgenden Schlüsselfaktoren berücksichtigen: 1. Kompatibilität der Systemumgebung: Betriebssystem: Es wird empfohlen, CentOS7 oder höher zu verwenden. CUDA und CUDNN: Pytorch -Version und CUDA -Version sind eng miteinander verbunden. Beispielsweise erfordert Pytorch1.9.0 CUDA11.1, während Pytorch2.0.1 CUDA11.3 erfordert. Die Cudnn -Version muss auch mit der CUDA -Version übereinstimmen. Bestimmen Sie vor der Auswahl der Pytorch -Version unbedingt, dass kompatible CUDA- und CUDNN -Versionen installiert wurden. Python -Version: Pytorch Official Branch

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

See all articles