Heim Datenbank MySQL-Tutorial So implementieren Sie die MySQL-Anweisungssperre

So implementieren Sie die MySQL-Anweisungssperre

Dec 08, 2017 pm 12:00 PM
mysql 加锁 方法

In diesem Artikel werden wir Ihnen die Methode zur Implementierung der MySQL-Anweisungssperre vorstellen, die schon immer ein schwieriges Thema war. Im Rahmen meiner Arbeit stellen Kollegen häufig Fragen zu diesem Thema. Heute werden wir kurz über dieses Problem sprechen und hoffen, allen helfen zu können.

Schauen Sie sich an, welche Sperren der folgenden SQL-Anweisung hinzugefügt werden


SLQ1:select * from t1 where id = 10;
SQL2:delete from t1 where id = 10;
Nach dem Login kopieren


(1) id ist nicht der Primärschlüssel

(2) Wie hoch ist die Isolationsstufe des aktuellen Systems

(3) Wenn die ID-Spalte nicht der Primärschlüssel ist, gibt es einen Index für die ID? Spalte

(4) id Wenn es einen sekundären Index für die Spalte gibt, ist dieser Index ein sekundärer Index

(5) Wie lauten die Ausführungspläne der beiden SQLs? Index-Scan oder vollständiger Tabellen-Scan

Der tatsächliche Ausführungsplan muss auf der Ausgabe von MySQL basieren

Kombination eins: Die ID-Spalte ist der Primärschlüssel, RC-Isolationsstufe
Kombination zwei: id Die Spalte ist ein sekundärer eindeutiger Index, RC-Isolationsstufe
Kombination drei: Die ID-Spalte ist ein sekundärer nicht eindeutiger Index, RC-Isolationsstufe
Kombination vier: Die ID-Spalte hat keinen Index, RC Isolationsstufe
Kombination fünf: Die ID-Spalte ist der Primärschlüssel, RR-Isolationsstufe
Kombination sechs: Die ID-Spalte ist ein sekundärer eindeutiger Index, RR-Isolationsstufe
Kombination sieben: Die ID-Spalte ist ein sekundärer Nicht-Index -eindeutiger Index, RR-Isolationsstufe
Kombination acht: Die ID-Spalte Es gibt keinen Index, RR-Isolationsstufe

Serialisierbare Isolationsstufe

Unter RR RC-Isolationsstufe ist SQL1: select nicht gesperrt, und im Folgenden wird nur SQL2: Sperrung des Löschvorgangs
Percona
Kombination eins: id primär besprochen Taste + RC

Percona




---TRANSACTION 1286310, ACTIVE 9 sec
2 lock struct(s), heap size 360, 1 row lock(s), undo log entries 1
MySQL thread id 341, OS thread handle 0x7f4d540d0700, query id 4510972 localhost root cleaning up
TABLE LOCK table `test`.`t1` trx id 1286310 lock mode IX
RECORD LOCKS space id 29 page no 3 n bits 80 index `PRIMARY` of table `test`.`t1` trx id 1286310 lock_mode X locks rec but not gap
Nach dem Login kopieren


MySQL



---TRANSACTION 5936, ACTIVE 171 sec
2 lock struct(s), heap size 360, 1 row lock(s), undo log entries 1
MySQL thread id 2, OS thread handle 0x7f5677201700, query id 364 localhost root
TABLE LOCK table `test`.`t1` trx id 5936 lock mode IX
RECORD LOCKS space id 6 page no 3 n bits 80 index `PRIMARY` of table `test`.`t1` trx id 5936 lock_mode X locks rec but not gap
Record lock, heap no 5 PHYSICAL RECORD: n_fields 4; compact format; info bits 32
 0: len 4; hex 8000000a; asc   ;;
 1: len 6; hex 000000001730; asc   0;;
 2: len 7; hex 26000001550110; asc &  U ;;
 3: len 1; hex 61; asc a;;
Nach dem Login kopieren


Kombination 2: Die Aktualisierung von id unique index + RC

auf dem eindeutigen Index erfordert zwei X-Sperren, von denen eine der eindeutigen Index-ID=10 entspricht Datensatz und einer, der dem Clustered-Index name='d' Datensatz

Percona



---TRANSACTION 1286327, ACTIVE 3 sec
3 lock struct(s), heap size 360, 2 row lock(s), undo log entries 1
MySQL thread id 344, OS thread handle 0x7f4d5404e700, query id 4510986 localhost root cleaning up
TABLE LOCK table `test`.`t2` trx id 1286327 lock mode IX
RECORD LOCKS space id 30 page no 4 n bits 80 index `id` of table `test`.`t2` trx id 1286327 lock_mode X locks rec but not gap
RECORD LOCKS space id 30 page no 3 n bits 80 index `PRIMARY` of table `test`.`t2` trx id 1286327 lock_mode X locks rec but not gap
Nach dem Login kopieren


MySQL entspricht



---TRANSACTION 5938, ACTIVE 3 sec
3 lock struct(s), heap size 360, 2 row lock(s), undo log entries 1
MySQL thread id 2, OS thread handle 0x7f5677201700, query id 374 localhost root
TABLE LOCK table `test`.`t2` trx id 5938 lock mode IX
RECORD LOCKS space id 7 page no 4 n bits 80 index `id` of table `test`.`t2` trx id 5938 lock_mode X locks rec but not gap
Record lock, heap no 7 PHYSICAL RECORD: n_fields 2; compact format; info bits 32
 0: len 4; hex 8000000a; asc   ;;
 1: len 1; hex 64; asc d;;

RECORD LOCKS space id 7 page no 3 n bits 80 index `PRIMARY` of table `test`.`t2` trx id 5938 lock_mode X locks rec but not gap
Record lock, heap no 7 PHYSICAL RECORD: n_fields 4; compact format; info bits 32
 0: len 1; hex 64; asc d;;
 1: len 6; hex 000000001732; asc   2;;
 2: len 7; hex 27000001560110; asc '  V ;;
 3: len 4; hex 8000000a; asc   ;;
Nach dem Login kopieren


Kombination drei: id nicht eindeutiger Index + RC

ID wird als normaler Index aufgeführt Dann werden alle entsprechenden Datensätze, die die SQL-Abfragebedingungen erfüllen, gleichzeitig gesperrt. Diese Datensätze befinden sich im Primärschlüsselindex Datensätze auf





---TRANSACTION 1286339, ACTIVE 9 sec
3 lock struct(s), heap size 360, 4 row lock(s), undo log entries 2
MySQL thread id 347, OS thread handle 0x7f4b67fff700, query id 4511015 localhost root cleaning up
TABLE LOCK table `test`.`t3` trx id 1286339 lock mode IX
RECORD LOCKS space id 31 page no 4 n bits 80 index `idx_key` of table `test`.`t3` trx id 1286339 lock_mode X locks rec but not gap
RECORD LOCKS space id 31 page no 3 n bits 80 index `PRIMARY` of table `test`.`t3` trx id 1286339 lock_mode X locks rec but not gap
Nach dem Login kopieren

MySQL



---TRANSACTION 5940, ACTIVE 3 sec
3 lock struct(s), heap size 360, 4 row lock(s), undo log entries 2
MySQL thread id 2, OS thread handle 0x7f5677201700, query id 378 localhost root
TABLE LOCK table `test`.`t3` trx id 5940 lock mode IX
RECORD LOCKS space id 8 page no 4 n bits 80 index `idx_key` of table `test`.`t3` trx id 5940 lock_mode X locks rec but not gap
Record lock, heap no 4 PHYSICAL RECORD: n_fields 2; compact format; info bits 32
 0: len 4; hex 8000000a; asc   ;;
 1: len 1; hex 62; asc b;;

Record lock, heap no 5 PHYSICAL RECORD: n_fields 2; compact format; info bits 32
 0: len 4; hex 8000000a; asc   ;;
 1: len 1; hex 64; asc d;;

RECORD LOCKS space id 8 page no 3 n bits 80 index `PRIMARY` of table `test`.`t3` trx id 5940 lock_mode X locks rec but not gap
Record lock, heap no 4 PHYSICAL RECORD: n_fields 4; compact format; info bits 32
 0: len 1; hex 62; asc b;;
 1: len 6; hex 000000001734; asc   4;;
 2: len 7; hex 28000001570110; asc (  W ;;
 3: len 4; hex 8000000a; asc   ;;

Record lock, heap no 5 PHYSICAL RECORD: n_fields 4; compact format; info bits 32
 0: len 1; hex 64; asc d;;
 1: len 6; hex 000000001734; asc   4;;
 2: len 7; hex 28000001570132; asc (  W 2;;
 3: len 4; hex 8000000a; asc   ;;
Nach dem Login kopieren

Kombination vier: ID-Nr index + RC
Percona




---TRANSACTION 1286373, ACTIVE 5 sec
2 lock struct(s), heap size 360, 2 row lock(s), undo log entries 2
MySQL thread id 348, OS thread handle 0x7f4d54193700, query id 4511037 localhost root cleaning up
TABLE LOCK table `test`.`t4` trx id 1286373 lock mode IX
RECORD LOCKS space id 33 page no 3 n bits 80 index `PRIMARY` of table `test`.`t4` trx id 1286373 lock_mode X locks rec but not gap
Nach dem Login kopieren

MySQL



---TRANSACTION 5946, ACTIVE 2 sec
2 lock struct(s), heap size 360, 2 row lock(s), undo log entries 2
MySQL thread id 2, OS thread handle 0x7f5677201700, query id 382 localhost root
TABLE LOCK table `test`.`t4` trx id 5946 lock mode IX
RECORD LOCKS space id 9 page no 3 n bits 80 index `PRIMARY` of table `test`.`t4` trx id 5946 lock_mode X locks rec but not gap
Record lock, heap no 3 PHYSICAL RECORD: n_fields 4; compact format; info bits 32
 0: len 1; hex 62; asc b;;
 1: len 6; hex 00000000173a; asc   :;;
 2: len 7; hex 2b0000015a0110; asc +  Z ;;
 3: len 4; hex 8000000a; asc   ;;

Record lock, heap no 5 PHYSICAL RECORD: n_fields 4; compact format; info bits 32
 0: len 1; hex 64; asc d;;
 1: len 6; hex 00000000173a; asc   :;;
 2: len 7; hex 2b0000015a012c; asc +  Z ,;;
 3: len 4; hex 8000000a; asc   ;;
Nach dem Login kopieren

Kombination fünf: ID-Primärschlüssel + RR
Referenzkombination eins

Kombination sechs: ID-Eindeutigkeitsindex + RR
Referenz Kombination zwei

Kombination sieben: id nicht eindeutiger Index + RR
Percona




---TRANSACTION 1592633, ACTIVE 24 sec
4 lock struct(s), heap size 1184, 5 row lock(s), undo log entries 2
MySQL thread id 794, OS thread handle 0x7f4d5404e700, query id 7801799 localhost root cleaning up
Trx read view will not see trx with id >= 1592634, sees < 1592634
TABLE LOCK table `test`.`t3` trx id 1592633 lock mode IX
RECORD LOCKS space id 31 page no 4 n bits 80 index `idx_key` of table `test`.`t3` trx id 1592633 lock_mode X
RECORD LOCKS space id 31 page no 3 n bits 80 index `PRIMARY` of table `test`.`t3` trx id 1592633 lock_mode X locks rec but not gap
RECORD LOCKS space id 31 page no 4 n bits 80 index `idx_key` of table `test`.`t3` trx id 1592633 lock_mode X locks gap before rec
Nach dem Login kopieren

MySQL



---TRANSACTION 5985, ACTIVE 7 sec
4 lock struct(s), heap size 1184, 5 row lock(s), undo log entries 2
MySQL thread id 12, OS thread handle 0x7f56770fd700, query id 500 localhost root
TABLE LOCK table `test`.`t3` trx id 5985 lock mode IX
RECORD LOCKS space id 8 page no 4 n bits 80 index `idx_key` of table `test`.`t3` trx id 5985 lock_mode X
Record lock, heap no 4 PHYSICAL RECORD: n_fields 2; compact format; info bits 32
 0: len 4; hex 8000000a; asc   ;;
 1: len 1; hex 64; asc d;;

Record lock, heap no 5 PHYSICAL RECORD: n_fields 2; compact format; info bits 32
 0: len 4; hex 8000000a; asc   ;;
 1: len 1; hex 62; asc b;;

RECORD LOCKS space id 8 page no 3 n bits 80 index `PRIMARY` of table `test`.`t3` trx id 5985 lock_mode X locks rec but not gap
Record lock, heap no 4 PHYSICAL RECORD: n_fields 4; compact format; info bits 32
 0: len 1; hex 64; asc d;;
 1: len 6; hex 000000001761; asc   a;;
 2: len 7; hex 3f0000016d0132; asc ?  m 2;;
 3: len 4; hex 8000000a; asc   ;;

Record lock, heap no 5 PHYSICAL RECORD: n_fields 4; compact format; info bits 32
 0: len 1; hex 62; asc b;;
 1: len 6; hex 000000001761; asc   a;;
 2: len 7; hex 3f0000016d0110; asc ?  m ;;
 3: len 4; hex 8000000a; asc   ;;

RECORD LOCKS space id 8 page no 4 n bits 80 index `idx_key` of table `test`.`t3` trx id 5985 lock_mode X locks gap before rec
Record lock, heap no 8 PHYSICAL RECORD: n_fields 2; compact format; info bits 0
 0: len 4; hex 8000000b; asc   ;;
 1: len 1; hex 66; asc f;;
Nach dem Login kopieren

Kombination acht: ID ohne Index + RR
Percona




---TRANSACTION 1592639, ACTIVE 4 sec
2 lock struct(s), heap size 360, 7 row lock(s), undo log entries 2
MySQL thread id 794, OS thread handle 0x7f4d5404e700, query id 7801804 localhost root cleaning up
TABLE LOCK table `test`.`t4` trx id 1592639 lock mode IX
RECORD LOCKS space id 33 page no 3 n bits 80 index `PRIMARY` of table `test`.`t4` trx id 1592639 lock_mode X
Nach dem Login kopieren

MySQL



---TRANSACTION 6000, ACTIVE 3 sec
2 lock struct(s), heap size 360, 7 row lock(s), undo log entries 2
MySQL thread id 12, OS thread handle 0x7f56770fd700, query id 546 localhost root
TABLE LOCK table `test`.`t4` trx id 6000 lock mode IX
RECORD LOCKS space id 9 page no 3 n bits 80 index `PRIMARY` of table `test`.`t4` trx id 6000 lock_mode X
Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info bits 0
 0: len 8; hex 73757072656d756d; asc supremum;;

Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 1; hex 61; asc a;;
 1: len 6; hex 000000001722; asc   ";;
 2: len 7; hex 9e0000014e0110; asc   N ;;
 3: len 4; hex 8000000f; asc   ;;

Record lock, heap no 3 PHYSICAL RECORD: n_fields 4; compact format; info bits 32
 0: len 1; hex 62; asc b;;
 1: len 6; hex 000000001770; asc   p;;
 2: len 7; hex 47000001730110; asc G  s ;;
 3: len 4; hex 8000000a; asc   ;;

Record lock, heap no 4 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 1; hex 63; asc c;;
 1: len 6; hex 000000001722; asc   ";;
 2: len 7; hex 9e0000014e0122; asc   N ";;
 3: len 4; hex 80000006; asc   ;;

Record lock, heap no 5 PHYSICAL RECORD: n_fields 4; compact format; info bits 32
 0: len 1; hex 64; asc d;;
 1: len 6; hex 000000001770; asc   p;;
 2: len 7; hex 4700000173012c; asc G  s ,;;
 3: len 4; hex 8000000a; asc   ;;

Record lock, heap no 6 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 1; hex 66; asc f;;
 1: len 6; hex 000000001722; asc   ";;
 2: len 7; hex 9e0000014e0134; asc   N 4;;
 3: len 4; hex 8000000b; asc   ;;

Record lock, heap no 7 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 2; hex 7a7a; asc zz;;
 1: len 6; hex 000000001722; asc   ";;
 2: len 7; hex 9e0000014e013d; asc   N =;;
 3: len 4; hex 80000002; asc   ;;
Nach dem Login kopieren

Kombination neun: Serialisierbar

für das oben genannte einfache SQL, der letzte Fall: Serialisierbare Isolationsstufe. Für SQL2: Löschen aus t1 mit id = 10; die Isolationsstufe „Serializable“ ist genau dieselbe wie die Isolationsstufe „Repeatable Read“ und wird daher nicht eingeführt.

Serialisierbare Isolationsstufe wirkt sich auf SQL1 aus: select * from t1 where id = 10; Diese SQL ist unter den Isolationsstufen RC und RR ein Snapshot-Lesen ohne Sperre. Auf der Isolationsstufe „Serialisierbar“ fügt SQL1 jedoch Lesesperren hinzu, was bedeutet, dass keine Snapshot-Lesevorgänge mehr vorhanden sind und die MVCC-Parallelitätskontrolle auf sperrenbasiertes CC herabgestuft wird.

In MySQL/InnoDB gilt das sogenannte Lesen ohne Sperren nicht für alle Situationen, sondern hängt mit der Isolationsstufe zusammen. Die Isolationsstufe „Serialisierbar“ ist nicht mehr gültig, wenn der Lesevorgang nicht gesperrt ist. Alle Lesevorgänge sind aktuelle Lesevorgänge.

Verwandte Empfehlungen:

Mysql-Transaktionsverarbeitung mit hoher Parallelität und Sperrung

So sperren Sie Dateien unter PHP_PHP-Tutorial

MySQL-Transaktionen und Sperrmechanismus

Das obige ist der detaillierte Inhalt vonSo implementieren Sie die MySQL-Anweisungssperre. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Crossplay haben?
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

MySQL: Einfache Konzepte für einfaches Lernen MySQL: Einfache Konzepte für einfaches Lernen Apr 10, 2025 am 09:29 AM

MySQL ist ein Open Source Relational Database Management System. 1) Datenbank und Tabellen erstellen: Verwenden Sie die Befehle erstellte und creatEtable. 2) Grundlegende Vorgänge: Einfügen, aktualisieren, löschen und auswählen. 3) Fortgeschrittene Operationen: Join-, Unterabfrage- und Transaktionsverarbeitung. 4) Debugging -Fähigkeiten: Syntax, Datentyp und Berechtigungen überprüfen. 5) Optimierungsvorschläge: Verwenden Sie Indizes, vermeiden Sie ausgewählt* und verwenden Sie Transaktionen.

Wie man phpmyadmin öffnet Wie man phpmyadmin öffnet Apr 10, 2025 pm 10:51 PM

Sie können PhpMyAdmin in den folgenden Schritten öffnen: 1. Melden Sie sich beim Website -Bedienfeld an; 2. Finden und klicken Sie auf das Symbol phpmyadmin. 3. Geben Sie MySQL -Anmeldeinformationen ein; 4. Klicken Sie auf "Login".

MySQL: Eine Einführung in die beliebteste Datenbank der Welt MySQL: Eine Einführung in die beliebteste Datenbank der Welt Apr 12, 2025 am 12:18 AM

MySQL ist ein Open Source Relational Database Management -System, das hauptsächlich zum schnellen und zuverlässigen Speicher und Abrufen von Daten verwendet wird. Sein Arbeitsprinzip umfasst Kundenanfragen, Abfragebedingungen, Ausführung von Abfragen und Rückgabergebnissen. Beispiele für die Nutzung sind das Erstellen von Tabellen, das Einsetzen und Abfragen von Daten sowie erweiterte Funktionen wie Join -Operationen. Häufige Fehler umfassen SQL -Syntax, Datentypen und Berechtigungen sowie Optimierungsvorschläge umfassen die Verwendung von Indizes, optimierte Abfragen und die Partitionierung von Tabellen.

Warum MySQL verwenden? Vorteile und Vorteile Warum MySQL verwenden? Vorteile und Vorteile Apr 12, 2025 am 12:17 AM

MySQL wird für seine Leistung, Zuverlässigkeit, Benutzerfreundlichkeit und Unterstützung der Gemeinschaft ausgewählt. 1.MYSQL bietet effiziente Datenspeicher- und Abruffunktionen, die mehrere Datentypen und erweiterte Abfragevorgänge unterstützen. 2. Übernehmen Sie die Architektur der Client-Server und mehrere Speichermotoren, um die Transaktion und die Abfrageoptimierung zu unterstützen. 3. Einfach zu bedienend unterstützt eine Vielzahl von Betriebssystemen und Programmiersprachen. V.

So verwenden Sie ein einzelnes Gewinde -Redis So verwenden Sie ein einzelnes Gewinde -Redis Apr 10, 2025 pm 07:12 PM

Redis verwendet eine einzelne Gewindearchitektur, um hohe Leistung, Einfachheit und Konsistenz zu bieten. Es wird E/A-Multiplexing, Ereignisschleifen, nicht blockierende E/A und gemeinsame Speicher verwendet, um die Parallelität zu verbessern, jedoch mit Einschränkungen von Gleichzeitbeschränkungen, einem einzelnen Ausfallpunkt und ungeeigneter Schreib-intensiver Workloads.

Mysqls Platz: Datenbanken und Programmierung Mysqls Platz: Datenbanken und Programmierung Apr 13, 2025 am 12:18 AM

Die Position von MySQL in Datenbanken und Programmierung ist sehr wichtig. Es handelt sich um ein Open -Source -Verwaltungssystem für relationale Datenbankverwaltung, das in verschiedenen Anwendungsszenarien häufig verwendet wird. 1) MySQL bietet effiziente Datenspeicher-, Organisations- und Abruffunktionen und unterstützt Systeme für Web-, Mobil- und Unternehmensebene. 2) Es verwendet eine Client-Server-Architektur, unterstützt mehrere Speichermotoren und Indexoptimierung. 3) Zu den grundlegenden Verwendungen gehören das Erstellen von Tabellen und das Einfügen von Daten, und erweiterte Verwendungen beinhalten Multi-Table-Verknüpfungen und komplexe Abfragen. 4) Häufig gestellte Fragen wie SQL -Syntaxfehler und Leistungsprobleme können durch den Befehl erklären und langsam abfragen. 5) Die Leistungsoptimierungsmethoden umfassen die rationale Verwendung von Indizes, eine optimierte Abfrage und die Verwendung von Caches. Zu den Best Practices gehört die Verwendung von Transaktionen und vorbereiteten Staten

MySQL und SQL: Wesentliche Fähigkeiten für Entwickler MySQL und SQL: Wesentliche Fähigkeiten für Entwickler Apr 10, 2025 am 09:30 AM

MySQL und SQL sind wesentliche Fähigkeiten für Entwickler. 1.MYSQL ist ein Open -Source -Relational Database Management -System, und SQL ist die Standardsprache, die zum Verwalten und Betrieb von Datenbanken verwendet wird. 2.MYSQL unterstützt mehrere Speichermotoren durch effiziente Datenspeicher- und Abruffunktionen, und SQL vervollständigt komplexe Datenoperationen durch einfache Aussagen. 3. Beispiele für die Nutzung sind grundlegende Abfragen und fortgeschrittene Abfragen wie Filterung und Sortierung nach Zustand. 4. Häufige Fehler umfassen Syntaxfehler und Leistungsprobleme, die durch Überprüfung von SQL -Anweisungen und Verwendung von Erklärungsbefehlen optimiert werden können. 5. Leistungsoptimierungstechniken umfassen die Verwendung von Indizes, die Vermeidung vollständiger Tabellenscanning, Optimierung von Join -Operationen und Verbesserung der Code -Lesbarkeit.

So erstellen Sie eine SQL -Datenbank So erstellen Sie eine SQL -Datenbank Apr 09, 2025 pm 04:24 PM

Das Erstellen einer SQL -Datenbank umfasst 10 Schritte: Auswählen von DBMs; Installation von DBMs; Erstellen einer Datenbank; Erstellen einer Tabelle; Daten einfügen; Daten abrufen; Daten aktualisieren; Daten löschen; Benutzer verwalten; Sichern der Datenbank.

See all articles