Heim > Web-Frontend > js-Tutorial > Hauptteil

JS-Methode zum Erhalten der besten N Farbwerte eines Bildes

php中世界最好的语言
Freigeben: 2018-03-23 11:57:42
Original
2900 Leute haben es durchsucht

Dieses Mal stelle ich Ihnen die Top-N-Farbwertmethode von JS vor, um den Top-N-Farbwert des Bildes zu erhalten. Was sind die Vorsichtsmaßnahmen, um den Top-N-Farbwert des Bildes mit JS zu erhalten? . Hier ist ein praktischer Fall, werfen wir einen Blick darauf.

Fragenanforderungen

Finden Sie das Tag heraus, das am häufigsten auf einer Seite erscheint! ! !

Persönliche Lösung:

var eles = document.getElementsByTagName('*');
var rs = [];
for(var i=0; i<eles.length; i++) {
  var tag_name = eles[i].tagName.toLowerCase();
  if(undefined != tag_name) {
    if(inJsonArray(rs, tag_name)) {
      addWeight(rs, tag_name);
    }else {
      rs.push({
        tag : tag_name,
        weight : 1
      })
    }        
  }      
}
SortByWeight(rs);
Nach dem Login kopieren

Idee:

Alle Tags abrufen – nach Tag-Namen gruppieren – nach Gewicht sortieren.

Wenn es einen besseren Weg gibt, teilen Sie ihn bitte mit.

Schauen wir uns die heutige Frage an:

Das Ermitteln der obersten N-Hauptfarbwerte eines Bildes ist dem Problem mit den meisten oben genannten Etiketten sehr ähnlich. Es gibt einen Unterschied in den Daten Größe, aber alles andere ist gleich.

Die Idee dieses Problems ist sehr klar. Der erste Schritt besteht darin, die Daten des Bildes zu ermitteln Der dritte Schritt besteht darin, die Clustering-Ergebnisse zu sortieren. Dieses Mal werden wir es also basierend auf dieser Idee umsetzen.

1. Datenerfassung

Die Bilddatenerfassung verwendet die getImageData()-Methode von Canvas, mit der der RGBA jedes Pixels ermittelt werden kann die Bilddaten.

var imgdatas=context.getImageData(0,0,150,150);//获取当前canvas数据
var imgdata = imgdatas.data;//获取rgba数据
var i = 0, len = imgdata.length;
var arr = [];
//将图片rgba数据push到新数组中
for(i ; i<len ; i+=4 ) {
  arr.push(imgdata[i]+','+imgdata[i+1]+','+imgdata[i+2]+','+imgdata[i+3]);  
}
Nach dem Login kopieren

Auf diese Weise können Sie alle Daten des Bildes abrufen, der Rest ist ein mathematisches Problem.

2. Daten-Clustering

Duplikate entfernen, gleiche Farbwerte zusammenführen, Anzahl (Gewicht) des Farbwertgewichts aufzeichnen

Clustering Dort Es gibt viele Methoden, darunter direkte mathematische Statistik oder K-Means, Entscheidungsbäume, Naive Bayes, Support-Vektor-Maschinen usw. Sie können jede beliebige verwenden, müssen aber dennoch die Anwendbarkeit und Effizienz verschiedener Methoden berücksichtigen.
Wir erhalten ein solches Array [{rgba: '21,12,45,0', Gewicht: 12}, {...}], um den Farbwert und die Anzahl der Vorkommen aufzuzeichnen,

3. Sortieren der Clustering-Ergebnisse

Sortieren Sie das im vorherigen Schritt erhaltene JSON-Array von groß nach klein oder von klein nach groß entsprechend dem Wert der Attributgewichtung Algorithmus.

4. Ergebnisvorschau

5. Zu tun

Ähnliche Farbwerte Ist es notwendig,

rgba(234,234,234,1) und rgba(234,235,235,1) zu einem Wert zusammenzuführen? Dazu gehören auch Probleme wie die Ähnlichkeitsberechnung.

Optimieren Sie den Clustering-Algorithmus

Erhöhen Sie Komplexität, Leistung und Ausführungsgeschwindigkeit

Kombiniert mit einigen Visualisierungsdingen

Zusammenfassung

Für die Verarbeitung großer Datenmengen ist es sinnvoller, diese im Backend zu platzieren. Schließlich können Multi-End-Computing wie verteilte Frameworks verwendet werden.

Die Fähigkeit des Browsers, Daten zu verarbeiten, ist noch eingeschränkt.

Ich glaube, dass Sie die Methode beherrschen, nachdem Sie den Fall in diesem Artikel gelesen haben. Weitere spannende Informationen finden Sie in anderen verwandten Artikeln auf der chinesischen PHP-Website!

Empfohlene Lektüre:

Animation im Miniprogramm implementieren

So erhalten Sie OpenID- und Benutzerinformationen per Miniprogramm

Detaillierte Erklärung der Verwendung von jquery zum Erstellen von Karussellbildern auf dem PC

Das obige ist der detaillierte Inhalt vonJS-Methode zum Erhalten der besten N Farbwerte eines Bildes. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage