Dieser Artikel stellt Ihnen hauptsächlich die relevanten Informationen zur Deduplizierung und Optimierung numerischer Arrays zum Erstellen von Binärbäumen vor. Der Artikel stellt es im Detail anhand von Beispielcodes vor Brauchen Sie es? Lassen Sie uns gemeinsam mit dem Herausgeber unten lernen.
Gemeinsame zweischichtige Schleife zur Implementierung der Array-Deduplizierung
let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2] let newArr = [] for (let i = 0; i < arr.length; i++) { let unique = true for (let j = 0; j < newArr.length; j++) { if (newArr[j] === arr[i]) { unique = false break } } if (unique) { newArr.push(arr[i]) } } console.log(newArr)
Konstruieren Sie einen Binärbaum, um eine Deduplizierung zu erreichen (gilt nur für Arrays vom numerischen Typ)
Konstruieren Sie die zuvor durchlaufenen Elemente in einen Binärbaum. Jeder Knoten im Baum ist erfüllt : der Wert des linken untergeordneten Knotens < der Wert des aktuellen untergeordneten Knotens
Dies optimiert den Prozess der Beurteilung, ob das Element zuvor aufgetreten ist
wenn Das Element ist größer als der aktuelle. Wenn der Knoten groß ist, müssen Sie nur feststellen, ob das Element im rechten Teilbaum des Knotens aufgetreten ist.
Wenn das Element kleiner als der aktuelle Knoten ist, müssen Sie nur feststellen Sie müssen lediglich feststellen, ob das Element im linken Teilbaum des Knotens aufgetreten ist.
let arr = [0, 1, 2, 2, 5, 7, 11, 7, 6, 4,5, 2, 2] class Node { constructor(value) { this.value = value this.left = null this.right = null } } class BinaryTree { constructor() { this.root = null this.arr = [] } insert(value) { let node = new Node(value) if (!this.root) { this.root = node this.arr.push(value) return this.arr } let current = this.root while (true) { if (value > current.value) { if (current.right) { current = current.right } else { current.right = node this.arr.push(value) break } } if (value < current.value) { if (current.left) { current = current.left } else { current.left = node this.arr.push(value) break } } if (value === current.value) { break } } return this.arr } } let binaryTree = new BinaryTree() for (let i = 0; i < arr.length; i++) { binaryTree.insert(arr[i]) } console.log(binaryTree.arr)
Optimierungsidee eins, das Maximum und das Minimum aufzeichnen Werte
Datensatz Wenn die Maximal- und Minimalwerte der eingefügten Elemente größer als das größte Element oder kleiner als das kleinste Element sind, fügen Sie direkt
< ein 🎜>let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2] class Node { constructor(value) { this.value = value this.left = null this.right = null } } class BinaryTree { constructor() { this.root = null this.arr = [] this.max = null this.min = null } insert(value) { let node = new Node(value) if (!this.root) { this.root = node this.arr.push(value) this.max = value this.min = value return this.arr } if (value > this.max) { this.arr.push(value) this.max = value this.findMax().right = node return this.arr } if (value < this.min) { this.arr.push(value) this.min = value this.findMin().left = node return this.arr } let current = this.root while (true) { if (value > current.value) { if (current.right) { current = current.right } else { current.right = node this.arr.push(value) break } } if (value < current.value) { if (current.left) { current = current.left } else { current.left = node this.arr.push(value) break } } if (value === current.value) { break } } return this.arr } findMax() { let current = this.root while (current.right) { current = current.right } return current } findMin() { let current = this.root while (current.left) { current = current.left } return current } } let binaryTree = new BinaryTree() for (let i = 0; i < arr.length; i++) { binaryTree.insert(arr[i]) } console.log(binaryTree.arr)
Optimierungsidee zwei, Konstruieren Sie einen rot-schwarzen Baum
let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2] console.log(Array.from(new Set(arr))) class Node { constructor(value) { this.value = value this.left = null this.right = null this.parent = null this.color = 'red' } } class RedBlackTree { constructor() { this.root = null this.arr = [] } insert(value) { let node = new Node(value) if (!this.root) { node.color = 'black' this.root = node this.arr.push(value) return this } let cur = this.root let inserted = false while (true) { if (value > cur.value) { if (cur.right) { cur = cur.right } else { cur.right = node this.arr.push(value) node.parent = cur inserted = true break } } if (value < cur.value) { if (cur.left) { cur = cur.left } else { cur.left = node this.arr.push(value) node.parent = cur inserted = true break } } if (value === cur.value) { break } } // 调整树的结构 if(inserted){ this.fixTree(node) } return this } fixTree(node) { if (!node.parent) { node.color = 'black' this.root = node return } if (node.parent.color === 'black') { return } let son = node let father = node.parent let grandFather = father.parent let directionFtoG = father === grandFather.left ? 'left' : 'right' let uncle = grandFather[directionFtoG === 'left' ? 'right' : 'left'] let directionStoF = son === father.left ? 'left' : 'right' if (!uncle || uncle.color === 'black') { if (directionFtoG === directionStoF) { if (grandFather.parent) { grandFather.parent[grandFather.parent.left === grandFather ? 'left' : 'right'] = father father.parent = grandFather.parent } else { this.root = father father.parent = null } father.color = 'black' grandFather.color = 'red' father[father.left === son ? 'right' : 'left'] && (father[father.left === son ? 'right' : 'left'].parent = grandFather) grandFather[grandFather.left === father ? 'left' : 'right'] = father[father.left === son ? 'right' : 'left'] father[father.left === son ? 'right' : 'left'] = grandFather grandFather.parent = father return } else { grandFather[directionFtoG] = son son.parent = grandFather son[directionFtoG] && (son[directionFtoG].parent = father) father[directionStoF] = son[directionFtoG] father.parent = son son[directionFtoG] = father this.fixTree(father) } } else { father.color = 'black' uncle.color = 'black' grandFather.color = 'red' this.fixTree(grandFather) } } } let redBlackTree = new RedBlackTree() for (let i = 0; i < arr.length; i++) { redBlackTree.insert(arr[i]) } console.log(redBlackTree.arr)
Andere Deduplizierungsmethoden
Deduplizierung durch Set-Objekt
[...new Set(arr)]
+ sort()
entfernenreduce()
Es ist zu beachten, dass beim Sortieren der Standardwert
0 zurückgibt, während in Reduce() ein kongruenter Vergleich durchgeführt wird compare(2, '2')
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let newArr = [] arr.sort((a, b) => { let res = a - b if (res !== 0) { return res } else { if (a === b) { return 0 } else { if (typeof a === 'number') { return -1 } else { return 1 } } } }).reduce((pre, cur) => { if (pre !== cur) { newArr.push(cur) return cur } return pre }, null)
+ includes()
map()
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let newArr = [] arr.map(a => !newArr.includes(a) && newArr.push(a))
+ includes()
Methodendeduplizierungreduce()
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let newArr = arr.reduce((pre, cur) => { !pre.includes(cur) && pre.push(cur) return pre }, [])
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let obj = {} arr.map(a => { if(!obj[JSON.stringify(a)]){ obj[JSON.stringify(a)] = 1 } }) console.log(Object.keys(obj).map(a => JSON.parse(a)))
Analyse des Deduplizierungsproblems des zweidimensionalen PHP-Array-Arrays
Zusammenfassung der JS-Array-Deduplizierungsmethode
Mehrere Möglichkeiten zur gemeinsamen Nutzung Duplikate aus JavaScript-Arrays entfernen
Das obige ist der detaillierte Inhalt vonDeduplizierung und Optimierung numerischer Arrays mithilfe des js-Binärbaums. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!