


Python betreibt ein zweidimensionales Array und zeichnet Bilder
Dieses Mal werde ich Ihnen Python-Operationen für das zweidimensionale Array-Zeichnen vorstellen. Was sind die Vorsichtsmaßnahmen für die Python-Operation von zweidimensionalen Arrays zum Zeichnen? Fall, werfen wir einen Blick darauf.
1. Zweidimensionaler Array-Wert
Hinweis: Ob es sich um ein zweidimensionales Array oder ein eindimensionales Array handelt , Die Datentypen im Array müssen genau gleich sein, das heißt, wenn es sich um numerische Typen handelt, müssen sie alle numerische Typen
#二维数组 import numpy as np list1=[[1.73,1.68,1.71,1.89,1.78], [54.4,59.2,63.6,88.4,68.7]] list3=[1.73,1.68,1.71,1.89,1.78] list4=[54.4,59.2,63.6,88.4,68.7] list5=np.array([1.73,1.68,1.71,1.89,1.78]) list6=np.array([54.4,59.2,63.6,88.4,68.7]) #构造二维数组 list=np.array([[1.73,1.68,1.71,1.89,1.78], [54.4,59.2,63.6,88.4,68.7]]) print type(list1) #两个list直接相运算是会报错的,如果想得到list3中的每个数据除以list4中相对应的数据值,则要引入nump中的array函数 # print list3/list4 #下面的可以实现list5/list6 print list5/list6 print type(list) #结果:<type 'numpy.ndarray'> print list.shape #结果:(2, 5) 二行5列二维数组 print list[0][2] #结果:1.71 ,取第0行第二列数值,即第三列1.71 print list[0,2] #结果:1.71 ,取第0行第二列数值,即第三列1.71 print list[:,1:3] #结果:[[ 1.68 1.71] [ 59.2 63.6 ]],取所有行的,第一列和第三列数据 print list[1,:] #结果:[ 54.4 59.2 63.6 88.4 68.7],取第一行的所有数值
2. Zeichnung
(1) Liniendiagramm
import matplotlib.pyplot as plt year=[1950,1970,1990,2010] pop=[2.518,3.68,5.23,6.97] # 1.线图 #调用plt。plot来画图,横轴纵轴两个参数即可 plt.plot(year,pop) # python要用show展现出来图 plt.show()
( 2) Streudiagramm
import matplotlib.pyplot as plt year=[1950,1970,1990,2010] pop=[2.518,3.68,5.23,6.97] #2.散点图,只是用用scat函数来调用即可 plt.scatter(year,pop) plt.show()
(3) Histogramm
import matplotlib.pyplot as plt #3.直方图 # 用hist(x,bins=10)函数来画,参数中x是个List,构建直方图的数集,bins是算出数据的边界及每个bin中有多少个数据点 values=[0,0.6,1.4,1.6,2.2,2.5,2.6,3.2,3.5,3.9,4.2,6] #有12个数据,bins=3将其分为3段,即(0,2),(2,4),(4,6),从直方图中可以看出(2,4)中的数据最多 plt.hist(values,bins=3) plt.show()
Detaillierte Erläuterung der Schritte der Python-Variablenzuweisung
Detaillierte Erläuterung der Python-Konfiguration und Verwendung von OpenCV
Das obige ist der detaillierte Inhalt vonPython betreibt ein zweidimensionales Array und zeichnet Bilder. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Aktivieren Sie die Pytorch -GPU -Beschleunigung am CentOS -System erfordert die Installation von CUDA-, CUDNN- und GPU -Versionen von Pytorch. Die folgenden Schritte führen Sie durch den Prozess: Cuda und Cudnn Installation Bestimmen Sie die CUDA-Version Kompatibilität: Verwenden Sie den Befehl nvidia-smi, um die von Ihrer NVIDIA-Grafikkarte unterstützte CUDA-Version anzuzeigen. Beispielsweise kann Ihre MX450 -Grafikkarte CUDA11.1 oder höher unterstützen. Download und installieren Sie Cudatoolkit: Besuchen Sie die offizielle Website von Nvidiacudatoolkit und laden Sie die entsprechende Version gemäß der höchsten CUDA -Version herunter und installieren Sie sie, die von Ihrer Grafikkarte unterstützt wird. Installieren Sie die Cudnn -Bibliothek:

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Minio-Objektspeicherung: Hochleistungs-Bereitstellung im Rahmen von CentOS System Minio ist ein hochleistungsfähiges, verteiltes Objektspeichersystem, das auf der GO-Sprache entwickelt wurde und mit Amazons3 kompatibel ist. Es unterstützt eine Vielzahl von Kundensprachen, darunter Java, Python, JavaScript und Go. In diesem Artikel wird kurz die Installation und Kompatibilität von Minio zu CentOS -Systemen vorgestellt. CentOS -Versionskompatibilitätsminio wurde in mehreren CentOS -Versionen verifiziert, einschließlich, aber nicht beschränkt auf: CentOS7.9: Bietet einen vollständigen Installationshandbuch für die Clusterkonfiguration, die Umgebungsvorbereitung, die Einstellungen von Konfigurationsdateien, eine Festplattenpartitionierung und Mini

Pytorch Distributed Training on CentOS -System erfordert die folgenden Schritte: Pytorch -Installation: Die Prämisse ist, dass Python und PIP im CentOS -System installiert sind. Nehmen Sie abhängig von Ihrer CUDA -Version den entsprechenden Installationsbefehl von der offiziellen Pytorch -Website ab. Für CPU-Schulungen können Sie den folgenden Befehl verwenden: PipinstallTorChTorChVisionTorChaudio Wenn Sie GPU-Unterstützung benötigen, stellen Sie sicher, dass die entsprechende Version von CUDA und CUDNN installiert ist und die entsprechende Pytorch-Version für die Installation verwenden. Konfiguration der verteilten Umgebung: Verteiltes Training erfordert in der Regel mehrere Maschinen oder mehrere Maschinen-Mehrfach-GPUs. Ort

Bei der Installation von PyTorch am CentOS -System müssen Sie die entsprechende Version sorgfältig auswählen und die folgenden Schlüsselfaktoren berücksichtigen: 1. Kompatibilität der Systemumgebung: Betriebssystem: Es wird empfohlen, CentOS7 oder höher zu verwenden. CUDA und CUDNN: Pytorch -Version und CUDA -Version sind eng miteinander verbunden. Beispielsweise erfordert Pytorch1.9.0 CUDA11.1, während Pytorch2.0.1 CUDA11.3 erfordert. Die Cudnn -Version muss auch mit der CUDA -Version übereinstimmen. Bestimmen Sie vor der Auswahl der Pytorch -Version unbedingt, dass kompatible CUDA- und CUDNN -Versionen installiert wurden. Python -Version: Pytorch Official Branch

Die Installation von CentOS-Installationen erfordert die folgenden Schritte: Installieren von Abhängigkeiten wie Entwicklungstools, PCRE-Devel und OpenSSL-Devel. Laden Sie das Nginx -Quellcode -Paket herunter, entpacken Sie es, kompilieren Sie es und installieren Sie es und geben Sie den Installationspfad als/usr/local/nginx an. Erstellen Sie NGINX -Benutzer und Benutzergruppen und setzen Sie Berechtigungen. Ändern Sie die Konfigurationsdatei nginx.conf und konfigurieren Sie den Hörport und den Domänennamen/die IP -Adresse. Starten Sie den Nginx -Dienst. Häufige Fehler müssen beachtet werden, z. B. Abhängigkeitsprobleme, Portkonflikte und Konfigurationsdateifehler. Die Leistungsoptimierung muss entsprechend der spezifischen Situation angepasst werden, z. B. das Einschalten des Cache und die Anpassung der Anzahl der Arbeitsprozesse.
