Python betreibt Excel zum Lesen und Schreiben von Daten
这次给大家带来python操作excel读写数据,python操作excel读写数据的注意事项有哪些,下面就是实战案例,一起来看一下。
本文实例为大家分享了python操作EXCEL的实例源码,供大家参考,具体内容如下
读EXCEL的操作:把excel的数据存储为字典类型
#coding=utf8 #导入读excel的操作库 import xlrd class GenExceptData(object): def init(self): try: self.dataDic={} #打开工作薄 self.wkbook= xlrd.open_workbook("Requirement.xls") #获取工作表“requirement” self.dataSheet=self.wkbook.sheet_by_name("requirement") #把数据按 按照相应格式写入excel表中 self.readDataToDicl() #保存文件 except Exception,e: print "Read Excel error:",e def readDataToDicl(self): try: nrows = self.dataSheet.nrows ncols = self.dataSheet.ncols print ncols ,nrows try: for rowNum in range(1,nrows): #把数据的当前行的元素与上一行元素作比较 #如果不相等执行if语句 try: singleJson={} propertyName=self.dataSheet.cell(rowNum,3).value propertyValue=self.dataSheet.cell(rowNum,4).value if self.dataSheet.cell(rowNum,0).value and self.dataSheet.cell(rowNum,2).value: mdEvent=self.dataSheet.cell(rowNum,0).value singleJson["serviceId"]=self.dataSheet.cell(rowNum,2).value singleJson[propertyName]=propertyValue print singleJson self.dataDic[mdEvent]=singleJson singleJson.clear() except Exception,e: print "Get Data Error:",e except Exception,e: print "Reading Data Error:",e except Exception,e: print "Reading Data TO Dic Error:",e def test(): GenExceptData() if name=="main": test()
写EXCEL的操作:把csv文件的数据按照需求写入到excel文件中
#coding=utf8 from readCSV import readCSV import xlwt class GenTestCase(): def init(self,path="E:\\PythonDemo\\OperExcel\\Demo.csv"): self.dataInfor=readCSV(path) #创建工作薄 self.wkbook=xlwt.Workbook() #创建表:“埋点需求” self.dataSheet=self.wkbook.add_sheet("shellt") self.creatHead() def creatHead(self): firstLine=[] #创建表头 for index in range(len(firstLine)): self.dataSheet.write(0,index,firstLine[index]) dataBody=self.dataInfor.buffer print dataBody.len() currentrow=1 for rowNum in range(1,len(dataBody)): for index in range(len(dataBody[rowNum])): if rowNum>1: if dataBody[rowNum-1][0]!=dataBody[rowNum][0] : print currentrow,rowNum if currentrow==1: for cols in range(3): cellValue=dataBody[currentrow][cols] cellValue=cellValue.decode("gbk") data=u"%s" %(cellValue) self.dataSheet.write_merge(currentrow,rowNum-1,cols,cols,data) for cols in range(6,13): cellValue=dataBody[currentrow][cols] cellValue=cellValue.decode("gbk") data=u"%s" %(cellValue) self.dataSheet.write_merge(currentrow,rowNum-1,cols,cols,data) else: for cols in range(3): cellValue=dataBody[currentrow][cols] cellValue=cellValue.decode("gbk") data=u"%s" %(cellValue) self.dataSheet.write_merge(currentrow-1,rowNum-1,cols,cols,data) for cols in range(6,12): cellValue=dataBody[currentrow][cols] cellValue=cellValue.decode("gbk") data=u"%s" %(cellValue) self.dataSheet.write_merge(currentrow-1,rowNum-1,cols,cols,data) currentrow=rowNum+1 break for cols in range(3,6): cellValue=dataBody[rowNum][cols] cellValue=cellValue.decode("gbk") data=u"%s" %(cellValue) self.dataSheet.write(rowNum,cols,data) self.wkbook.save(r'reqq.xlsx') def test(): GenTestCase() if name=="main": test()
相信看了本文案例你已经掌握了方法,更多精彩请关注php中文网其它相关文章!
推荐阅读:
Das obige ist der detaillierte Inhalt vonPython betreibt Excel zum Lesen und Schreiben von Daten. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Es ist unmöglich, das MongoDB -Passwort direkt über Navicat anzuzeigen, da es als Hash -Werte gespeichert ist. So rufen Sie verlorene Passwörter ab: 1. Passwörter zurücksetzen; 2. Überprüfen Sie die Konfigurationsdateien (können Hash -Werte enthalten). 3. Überprüfen Sie Codes (May Hardcode -Passwörter).

Als Datenprofi müssen Sie große Datenmengen aus verschiedenen Quellen verarbeiten. Dies kann Herausforderungen für das Datenmanagement und die Analyse darstellen. Glücklicherweise können zwei AWS -Dienste helfen: AWS -Kleber und Amazon Athena.

Zu den Schritten zum Starten eines Redis -Servers gehören: Installieren von Redis gemäß dem Betriebssystem. Starten Sie den Redis-Dienst über Redis-Server (Linux/macOS) oder redis-server.exe (Windows). Verwenden Sie den Befehl redis-cli ping (linux/macOS) oder redis-cli.exe ping (Windows), um den Dienststatus zu überprüfen. Verwenden Sie einen Redis-Client wie Redis-Cli, Python oder Node.js, um auf den Server zuzugreifen.

Um eine Warteschlange aus Redis zu lesen, müssen Sie den Warteschlangenname erhalten, die Elemente mit dem Befehl LPOP lesen und die leere Warteschlange verarbeiten. Die spezifischen Schritte sind wie folgt: Holen Sie sich den Warteschlangenname: Nennen Sie ihn mit dem Präfix von "Warteschlange:" wie "Warteschlangen: My-Queue". Verwenden Sie den Befehl LPOP: Wischen Sie das Element aus dem Kopf der Warteschlange aus und geben Sie seinen Wert zurück, z. B. die LPOP-Warteschlange: my-queue. Verarbeitung leerer Warteschlangen: Wenn die Warteschlange leer ist, gibt LPOP NIL zurück, und Sie können überprüfen, ob die Warteschlange existiert, bevor Sie das Element lesen.

FRAGE: Wie kann man die Redis -Server -Version anzeigen? Verwenden Sie das Befehlszeilen-Tool-REDIS-CLI-Verssion, um die Version des angeschlossenen Servers anzuzeigen. Verwenden Sie den Befehl "Info Server", um die interne Version des Servers anzuzeigen, und muss Informationen analysieren und zurückgeben. Überprüfen Sie in einer Cluster -Umgebung die Versionskonsistenz jedes Knotens und können automatisch mit Skripten überprüft werden. Verwenden Sie Skripte, um die Anzeigeversionen zu automatisieren, z. B. eine Verbindung mit Python -Skripten und Druckversionsinformationen.

Die Kennwortsicherheit von Navicat beruht auf der Kombination aus symmetrischer Verschlüsselung, Kennwortstärke und Sicherheitsmaßnahmen. Zu den spezifischen Maßnahmen gehören: Verwenden von SSL -Verbindungen (vorausgesetzt, dass der Datenbankserver das Zertifikat unterstützt und korrekt konfiguriert), die Navicat regelmäßig Aktualisierung unter Verwendung von sichereren Methoden (z. B. SSH -Tunneln), die Einschränkung von Zugriffsrechten und vor allem niemals Kennwörter aufzeichnen.
