In diesem Artikel wird hauptsächlich das Mnist-Klassifizierungsbeispiel für den Einstieg in Pytorch vorgestellt. Es hat einen gewissen Referenzwert.
Das Beispiel in diesem Artikel teilt Ihnen den Mnist für den Einstieg mit Pytorch. Der spezifische Code der Klassifizierung ist wie folgt:
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'denny' __time__ = '2017-9-9 9:03' import torch import torchvision from torch.autograd import Variable import torch.utils.data.dataloader as Data train_data = torchvision.datasets.MNIST( './mnist', train=True, transform=torchvision.transforms.ToTensor(), download=True ) test_data = torchvision.datasets.MNIST( './mnist', train=False, transform=torchvision.transforms.ToTensor() ) print("train_data:", train_data.train_data.size()) print("train_labels:", train_data.train_labels.size()) print("test_data:", test_data.test_data.size()) train_loader = Data.DataLoader(dataset=train_data, batch_size=64, shuffle=True) test_loader = Data.DataLoader(dataset=test_data, batch_size=64) class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = torch.nn.Sequential( torch.nn.Conv2d(1, 32, 3, 1, 1), torch.nn.ReLU(), torch.nn.MaxPool2d(2)) self.conv2 = torch.nn.Sequential( torch.nn.Conv2d(32, 64, 3, 1, 1), torch.nn.ReLU(), torch.nn.MaxPool2d(2) ) self.conv3 = torch.nn.Sequential( torch.nn.Conv2d(64, 64, 3, 1, 1), torch.nn.ReLU(), torch.nn.MaxPool2d(2) ) self.dense = torch.nn.Sequential( torch.nn.Linear(64 * 3 * 3, 128), torch.nn.ReLU(), torch.nn.Linear(128, 10) ) def forward(self, x): conv1_out = self.conv1(x) conv2_out = self.conv2(conv1_out) conv3_out = self.conv3(conv2_out) res = conv3_out.view(conv3_out.size(0), -1) out = self.dense(res) return out model = Net() print(model) optimizer = torch.optim.Adam(model.parameters()) loss_func = torch.nn.CrossEntropyLoss() for epoch in range(10): print('epoch {}'.format(epoch + 1)) # training----------------------------- train_loss = 0. train_acc = 0. for batch_x, batch_y in train_loader: batch_x, batch_y = Variable(batch_x), Variable(batch_y) out = model(batch_x) loss = loss_func(out, batch_y) train_loss += loss.data[0] pred = torch.max(out, 1)[1] train_correct = (pred == batch_y).sum() train_acc += train_correct.data[0] optimizer.zero_grad() loss.backward() optimizer.step() print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len( train_data)), train_acc / (len(train_data)))) # evaluation-------------------------------- model.eval() eval_loss = 0. eval_acc = 0. for batch_x, batch_y in test_loader: batch_x, batch_y = Variable(batch_x, volatile=True), Variable(batch_y, volatile=True) out = model(batch_x) loss = loss_func(out, batch_y) eval_loss += loss.data[0] pred = torch.max(out, 1)[1] num_correct = (pred == batch_y).sum() eval_acc += num_correct.data[0] print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len( test_data)), eval_acc / (len(test_data))))
Verwandte Empfehlungen:
Wie wäre es mit Python? Detaillierte Erklärung zum Lesen binärer Mnist-Instanzen
Ein gutes Einführungs-Tutorial zu Python_python
Das obige ist der detaillierte Inhalt vonMnist-Klassifizierungsbeispiel für den Einstieg in Pytorch. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!