Mnist-Klassifizierungsbeispiel für den Einstieg in Pytorch

不言
Freigeben: 2018-04-14 16:00:57
Original
4481 Leute haben es durchsucht

In diesem Artikel wird hauptsächlich das Mnist-Klassifizierungsbeispiel für den Einstieg in Pytorch vorgestellt. Es hat einen gewissen Referenzwert.

Das Beispiel in diesem Artikel teilt Ihnen den Mnist für den Einstieg mit Pytorch. Der spezifische Code der Klassifizierung ist wie folgt:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'denny'
__time__ = '2017-9-9 9:03'

import torch
import torchvision
from torch.autograd import Variable
import torch.utils.data.dataloader as Data

train_data = torchvision.datasets.MNIST(
 './mnist', train=True, transform=torchvision.transforms.ToTensor(), download=True
)
test_data = torchvision.datasets.MNIST(
 './mnist', train=False, transform=torchvision.transforms.ToTensor()
)
print("train_data:", train_data.train_data.size())
print("train_labels:", train_data.train_labels.size())
print("test_data:", test_data.test_data.size())

train_loader = Data.DataLoader(dataset=train_data, batch_size=64, shuffle=True)
test_loader = Data.DataLoader(dataset=test_data, batch_size=64)


class Net(torch.nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = torch.nn.Sequential(
  torch.nn.Conv2d(1, 32, 3, 1, 1),
  torch.nn.ReLU(),
  torch.nn.MaxPool2d(2))
 self.conv2 = torch.nn.Sequential(
  torch.nn.Conv2d(32, 64, 3, 1, 1),
  torch.nn.ReLU(),
  torch.nn.MaxPool2d(2)
 )
 self.conv3 = torch.nn.Sequential(
  torch.nn.Conv2d(64, 64, 3, 1, 1),
  torch.nn.ReLU(),
  torch.nn.MaxPool2d(2)
 )
 self.dense = torch.nn.Sequential(
  torch.nn.Linear(64 * 3 * 3, 128),
  torch.nn.ReLU(),
  torch.nn.Linear(128, 10)
 )

 def forward(self, x):
 conv1_out = self.conv1(x)
 conv2_out = self.conv2(conv1_out)
 conv3_out = self.conv3(conv2_out)
 res = conv3_out.view(conv3_out.size(0), -1)
 out = self.dense(res)
 return out


model = Net()
print(model)

optimizer = torch.optim.Adam(model.parameters())
loss_func = torch.nn.CrossEntropyLoss()

for epoch in range(10):
 print('epoch {}'.format(epoch + 1))
 # training-----------------------------
 train_loss = 0.
 train_acc = 0.
 for batch_x, batch_y in train_loader:
 batch_x, batch_y = Variable(batch_x), Variable(batch_y)
 out = model(batch_x)
 loss = loss_func(out, batch_y)
 train_loss += loss.data[0]
 pred = torch.max(out, 1)[1]
 train_correct = (pred == batch_y).sum()
 train_acc += train_correct.data[0]
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
 print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len(
 train_data)), train_acc / (len(train_data))))

 # evaluation--------------------------------
 model.eval()
 eval_loss = 0.
 eval_acc = 0.
 for batch_x, batch_y in test_loader:
 batch_x, batch_y = Variable(batch_x, volatile=True), Variable(batch_y, volatile=True)
 out = model(batch_x)
 loss = loss_func(out, batch_y)
 eval_loss += loss.data[0]
 pred = torch.max(out, 1)[1]
 num_correct = (pred == batch_y).sum()
 eval_acc += num_correct.data[0]
 print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
 test_data)), eval_acc / (len(test_data))))
Nach dem Login kopieren

Verwandte Empfehlungen:

Wie wäre es mit Python? Detaillierte Erklärung zum Lesen binärer Mnist-Instanzen

Ein gutes Einführungs-Tutorial zu Python_python

Das obige ist der detaillierte Inhalt vonMnist-Klassifizierungsbeispiel für den Einstieg in Pytorch. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage