Heim Backend-Entwicklung Python-Tutorial Analyse von Missverständnissen über die Verwendung von Blockierung (Join) und Sperre (Lock) im Python-Multithreading

Analyse von Missverständnissen über die Verwendung von Blockierung (Join) und Sperre (Lock) im Python-Multithreading

Apr 27, 2018 am 10:53 AM
join python

Dieser Artikel ist hauptsächlich für alle zum Detail gedacht Es führt zu Missverständnissen über das Blockieren von Join und Lock in Python-Multithreading, die einen gewissen Referenzwert haben. Interessierte Freunde können sich auf

Über das Blockieren des Hauptthreads

Falsch beziehen Die Verwendung von Join

Thread.join() dient dazu, den Hauptthread zu blockieren. Das heißt, wenn der untergeordnete Thread nicht zurückkehrt, wartet der Hauptthread auf seine Rückkehr, bevor er mit der Ausführung fortfährt.

Join kann nicht mit Start in einer Schleife verwendet werden
Das Folgende ist der Fehlercode. Der Code erstellt 5 Threads und verwendet dann eine Schleife, um die Threads zu aktivieren.

threads = [Thread() for i in range(5)]
for thread in threads:
  thread.start()
  thread.join()
Nach dem Login kopieren

Ausführungsprozess:

1. In der ersten Schleife aktiviert der Hauptthread Thread 1 über die Startfunktion und den Thread 1 führt Berechnungen durch.
2. Da die Startfunktion den Hauptthread nicht blockiert, führt der Hauptthread die Join-Funktion nach unten aus.
3 von Thread 1. Bevor Thread 1 das Ergebnis zurückgibt, kann der Hauptthread den nächsten Zyklus nicht ausführen
4. Aktiviert Thread 2 und wird von ihm blockiert ...

Auf diese Weise ist ersichtlich, dass die fünf Threads, die gleichzeitig sein sollten, hier zu sequentiellen Warteschlangen geworden sind und die Effizienz dieselbe ist wie die von ein einzelner Thread.

Die korrekte Verwendung von Join

Verwenden Sie zwei Schleifen, um die Funktionen

start bzw. join zu verarbeiten . Parallelität kann erreicht werden

threads = [Thread() for i in range(5)]
for thread in threads:
  thread.start()
for thread in threads:
  thread.join()
Nach dem Login kopieren

time.sleep ersetzt Join zum Debuggen

Ich habe solchen Code bereits in einigen Projekten gesehen, der Zeit verwendet .sleep statt beizutreten, um den Hauptthread manuell zu blockieren.

Bevor alle untergeordneten Threads zurückkehren, wird der Hauptthread zu einer drahtlosen Schleife und kann nicht beendet werden.

for thread in threads:
  thread.start()
while 1:
  if thread_num == 0:
    break
  time.sleep(0.01)
Nach dem Login kopieren

Über Thread-Sperre (threading.Lock)

Ob Single-Core-CPU+PIL Benötigen Sie noch eine Sperre?

Nichtatomare Operation

Anzahl = Anzahl + 1 Theoretisch ist es threadunsicher. Verwenden Sie 3 Threads, um den Wert der globalen Variablenanzahl gleichzeitig zu ändern. Und überprüfen Sie die Ergebnisse der Programmausführung korrekt ist, bedeutet dies, dass kein Thread-Konflikt auftritt.

Verwenden Sie den folgenden Code zum Testen

# -*- coding: utf-8 -*-
import threading
import time
count = 0
class Counter(threading.Thread):
  def __init__(self, name):
    self.thread_name = name
    super(Counter, self).__init__(name=name)
  def run(self):
    global count
    for i in xrange(100000):
      count = count + 1
counters = [Counter('thread:%s' % i) for i in range(5)]
for counter in counters:
  counter.start()
time.sleep(5)
print 'count=%s' % count
Nach dem Login kopieren

Ausführungsergebnis:

count=275552

Tatsächlich sind die Ergebnisse jedes Laufs unterschiedlich und falsch, was beweist, dass Single-Core-CPU+PIL immer noch keine Thread-Sicherheit garantieren kann.

Korrekter Code nach dem Sperren:

# -*- coding: utf-8 -*-
import threading
import time
count = 0
lock = threading.Lock()
class Counter(threading.Thread):
  def __init__(self, name):
    self.thread_name = name
    self.lock = threading.Lock()
    super(Counter, self).__init__(name=name)
  def run(self):
    global count
    global lock
    for i in xrange(100000):
      lock.acquire()
      count = count + 1
      lock.release()


counters = [Counter('thread:%s' % i) for i in range(5)]

for counter in counters:
  counter.start()

time.sleep(5)
print 'count=%s' % count
Nach dem Login kopieren

Ergebnis:

count=500000

Achten Sie auf die globale Natur der Sperre

Dies ist ein einfaches Python-Syntaxproblem, das jedoch ignoriert werden kann, wenn die Logik komplex ist.

Stellen Sie sicher, dass die Sperre häufig vorkommt mehrere Unterthreads, das heißt, es werden keine Sperren innerhalb der Thread-Unterklasse erstellt.


Die folgenden sind

Fehlercodes

# -*- coding: utf-8 -*-

import threading
import time
count = 0
# lock = threading.Lock() # 正确的声明位置
class Counter(threading.Thread):
  def __init__(self, name):
    self.thread_name = name
    self.lock = threading.Lock() # 错误的声明位置
    super(Counter, self).__init__(name=name)
  def run(self):
    global count
    for i in xrange(100000):
      self.lock.acquire()
      count = count + 1
      self.lock.release()
counters = [Counter('thread:%s' % i) for i in range(5)]

for counter in counters:
  print counter.thread_name
  counter.start()

time.sleep(5)
print 'count=%s' % count
Nach dem Login kopieren

Verwandte Empfehlungen:


Detaillierte Erläuterung der Synchronisationssperren in Python-Threads

Python-Multithreading-Ereignisse im Detail Erläuterung der Verwendung von Event

Implementierung des Python-Thread-Pools Threadpool

Das obige ist der detaillierte Inhalt vonAnalyse von Missverständnissen über die Verwendung von Blockierung (Join) und Sperre (Lock) im Python-Multithreading. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Crossplay haben?
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

PHP und Python: Code Beispiele und Vergleich PHP und Python: Code Beispiele und Vergleich Apr 15, 2025 am 12:07 AM

PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Python gegen JavaScript: Community, Bibliotheken und Ressourcen Python gegen JavaScript: Community, Bibliotheken und Ressourcen Apr 15, 2025 am 12:16 AM

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Wie ist die GPU -Unterstützung für Pytorch bei CentOS? Wie ist die GPU -Unterstützung für Pytorch bei CentOS? Apr 14, 2025 pm 06:48 PM

Aktivieren Sie die Pytorch -GPU -Beschleunigung am CentOS -System erfordert die Installation von CUDA-, CUDNN- und GPU -Versionen von Pytorch. Die folgenden Schritte führen Sie durch den Prozess: Cuda und Cudnn Installation Bestimmen Sie die CUDA-Version Kompatibilität: Verwenden Sie den Befehl nvidia-smi, um die von Ihrer NVIDIA-Grafikkarte unterstützte CUDA-Version anzuzeigen. Beispielsweise kann Ihre MX450 -Grafikkarte CUDA11.1 oder höher unterstützen. Download und installieren Sie Cudatoolkit: Besuchen Sie die offizielle Website von Nvidiacudatoolkit und laden Sie die entsprechende Version gemäß der höchsten CUDA -Version herunter und installieren Sie sie, die von Ihrer Grafikkarte unterstützt wird. Installieren Sie die Cudnn -Bibliothek:

Detaillierte Erklärung des Docker -Prinzips Detaillierte Erklärung des Docker -Prinzips Apr 14, 2025 pm 11:57 PM

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Miniopen CentOS -Kompatibilität Miniopen CentOS -Kompatibilität Apr 14, 2025 pm 05:45 PM

Minio-Objektspeicherung: Hochleistungs-Bereitstellung im Rahmen von CentOS System Minio ist ein hochleistungsfähiges, verteiltes Objektspeichersystem, das auf der GO-Sprache entwickelt wurde und mit Amazons3 kompatibel ist. Es unterstützt eine Vielzahl von Kundensprachen, darunter Java, Python, JavaScript und Go. In diesem Artikel wird kurz die Installation und Kompatibilität von Minio zu CentOS -Systemen vorgestellt. CentOS -Versionskompatibilitätsminio wurde in mehreren CentOS -Versionen verifiziert, einschließlich, aber nicht beschränkt auf: CentOS7.9: Bietet einen vollständigen Installationshandbuch für die Clusterkonfiguration, die Umgebungsvorbereitung, die Einstellungen von Konfigurationsdateien, eine Festplattenpartitionierung und Mini

Wie man eine verteilte Schulung von Pytorch auf CentOS betreibt Wie man eine verteilte Schulung von Pytorch auf CentOS betreibt Apr 14, 2025 pm 06:36 PM

Pytorch Distributed Training on CentOS -System erfordert die folgenden Schritte: Pytorch -Installation: Die Prämisse ist, dass Python und PIP im CentOS -System installiert sind. Nehmen Sie abhängig von Ihrer CUDA -Version den entsprechenden Installationsbefehl von der offiziellen Pytorch -Website ab. Für CPU-Schulungen können Sie den folgenden Befehl verwenden: PipinstallTorChTorChVisionTorChaudio Wenn Sie GPU-Unterstützung benötigen, stellen Sie sicher, dass die entsprechende Version von CUDA und CUDNN installiert ist und die entsprechende Pytorch-Version für die Installation verwenden. Konfiguration der verteilten Umgebung: Verteiltes Training erfordert in der Regel mehrere Maschinen oder mehrere Maschinen-Mehrfach-GPUs. Ort

So wählen Sie die Pytorch -Version auf CentOS aus So wählen Sie die Pytorch -Version auf CentOS aus Apr 14, 2025 pm 06:51 PM

Bei der Installation von PyTorch am CentOS -System müssen Sie die entsprechende Version sorgfältig auswählen und die folgenden Schlüsselfaktoren berücksichtigen: 1. Kompatibilität der Systemumgebung: Betriebssystem: Es wird empfohlen, CentOS7 oder höher zu verwenden. CUDA und CUDNN: Pytorch -Version und CUDA -Version sind eng miteinander verbunden. Beispielsweise erfordert Pytorch1.9.0 CUDA11.1, während Pytorch2.0.1 CUDA11.3 erfordert. Die Cudnn -Version muss auch mit der CUDA -Version übereinstimmen. Bestimmen Sie vor der Auswahl der Pytorch -Version unbedingt, dass kompatible CUDA- und CUDNN -Versionen installiert wurden. Python -Version: Pytorch Official Branch

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

See all articles