


Zusammenfassung verschiedener Methoden für den Zugriff auf XLS/XLSX-Dateien in Python
这篇文章主要介绍了关于Python学习_几种存取xls/xlsx文件的方法总结,有着一定的参考价值,现在分享给大家,有需要的朋友可以参考一下
想在深度学习程序运行时动态存下来一些参数。
存成Excel文件查看方便,就查了几种方法,做个测试。因为我平常也不怎么用 Excel,简单的存取数据就够了。
xlwt/xlrd库 存Excel文件:(如果存储数据中有字符,那么写法还有点小小的变化)
import xlwt workbook = xlwt.Workbook(encoding='utf-8') booksheet = workbook.add_sheet('Sheet 1', cell_overwrite_ok=True) #存第一行cell(1,1)和cell(1,2) booksheet.write(0,0,34) booksheet.write(0,1,38) #存第二行cell(2,1)和cell(2,2) booksheet.write(1,0,36) booksheet.write(1,1,39) #存一行数据 rowdata = [43,56] for i in range(len(rowdata)): booksheet.write(2,i,rowdata[i]) workbook.save('test_xlwt.xls')
读Excel文件:(同样是对于数值类型数据)
import xlrd workbook = xlrd.open_workbook('D:\\Py_exercise\\test_xlwt.xls') print(workbook.sheet_names()) #查看所有sheet booksheet = workbook.sheet_by_index(0) #用索引取第一个sheet booksheet = workbook.sheet_by_name('Sheet 1') #或用名称取sheet #读单元格数据 cell_11 = booksheet.cell_value(0,0) cell_21 = booksheet.cell_value(1,0) #读一行数据 row_3 = booksheet.row_values(2) print(cell_11, cell_21, row_3) >>>34.0 36.0 [43.0, 56.0]
openpyxl 库 存Excel文件:
from openpyxl import Workbook workbook = Workbook() booksheet = workbook.active #获取当前活跃的sheet,默认是第一个sheet #存第一行单元格cell(1,1) booksheet.cell(1,1).value = 6 #这个方法索引从1开始 booksheet.cell("B1").value = 7 #存一行数据 booksheet.append([11,87]) workbook.save("test_openpyxl.xlsx")
读Excel文件:
from openpyxl import load_workbook workbook = load_workbook('D:\\Py_exercise\\test_openpyxl.xlsx') #booksheet = workbook.active #获取当前活跃的sheet,默认是第一个sheet sheets = workbook.get_sheet_names() #从名称获取sheet booksheet = workbook.get_sheet_by_name(sheets[0]) rows = booksheet.rows columns = booksheet.columns #迭代所有的行 for row in rows: line = [col.value for col in row] #通过坐标读取值 cell_11 = booksheet.cell('A1').value cell_11 = booksheet.cell(row=1, column=1).value
原理上其实都一样,就写法上有些差别。
其实如果对存储格式没有要求的话,我觉得存成 csv文件 也挺好的:
import pandas as pd csv_mat = np.empty((0,2),float) csv_mat = np.append(csv_mat, [[43,55]], axis=0) csv_mat = np.append(csv_mat, [[65,67]], axis=0) csv_pd = pd.DataFrame(csv_mat) csv_pd.to_csv("test_pd.csv", sep=',', header=False, index=False)
因为它读起来非常简单:
import pandas as pd filename = "D:\\Py_exercise\\test_pd.csv" csv_data = pd.read_csv(filename, header=None) csv_data = np.array(csv_data, dtype=float)
相关推荐:
Das obige ist der detaillierte Inhalt vonZusammenfassung verschiedener Methoden für den Zugriff auf XLS/XLSX-Dateien in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



MySQL hat eine kostenlose Community -Version und eine kostenpflichtige Enterprise -Version. Die Community -Version kann kostenlos verwendet und geändert werden, die Unterstützung ist jedoch begrenzt und für Anwendungen mit geringen Stabilitätsanforderungen und starken technischen Funktionen geeignet. Die Enterprise Edition bietet umfassende kommerzielle Unterstützung für Anwendungen, die eine stabile, zuverlässige Hochleistungsdatenbank erfordern und bereit sind, Unterstützung zu bezahlen. Zu den Faktoren, die bei der Auswahl einer Version berücksichtigt werden, gehören Kritikalität, Budgetierung und technische Fähigkeiten von Anwendungen. Es gibt keine perfekte Option, nur die am besten geeignete Option, und Sie müssen die spezifische Situation sorgfältig auswählen.

Hadidb: Eine leichte, hochrangige skalierbare Python-Datenbank Hadidb (HadIDB) ist eine leichte Datenbank in Python mit einem hohen Maß an Skalierbarkeit. Installieren Sie HadIDB mithilfe der PIP -Installation: PipinstallHadIDB -Benutzerverwaltung erstellen Benutzer: createUser (), um einen neuen Benutzer zu erstellen. Die Authentication () -Methode authentifiziert die Identität des Benutzers. fromHadidb.operationImportUseruser_obj = user ("admin", "admin") user_obj.

Es ist unmöglich, das MongoDB -Passwort direkt über Navicat anzuzeigen, da es als Hash -Werte gespeichert ist. So rufen Sie verlorene Passwörter ab: 1. Passwörter zurücksetzen; 2. Überprüfen Sie die Konfigurationsdateien (können Hash -Werte enthalten). 3. Überprüfen Sie Codes (May Hardcode -Passwörter).

Die MySQL-Datenbankleistung Optimierungshandbuch In ressourcenintensiven Anwendungen spielt die MySQL-Datenbank eine entscheidende Rolle und ist für die Verwaltung massiver Transaktionen verantwortlich. Mit der Erweiterung der Anwendung werden jedoch die Datenbankleistung Engpässe häufig zu einer Einschränkung. In diesem Artikel werden eine Reihe effektiver Strategien zur Leistungsoptimierung von MySQL -Leistung untersucht, um sicherzustellen, dass Ihre Anwendung unter hohen Lasten effizient und reaktionsschnell bleibt. Wir werden tatsächliche Fälle kombinieren, um eingehende Schlüsseltechnologien wie Indexierung, Abfrageoptimierung, Datenbankdesign und Caching zu erklären. 1. Das Design der Datenbankarchitektur und die optimierte Datenbankarchitektur sind der Eckpfeiler der MySQL -Leistungsoptimierung. Hier sind einige Kernprinzipien: Die Auswahl des richtigen Datentyps und die Auswahl des kleinsten Datentyps, der den Anforderungen entspricht, kann nicht nur Speicherplatz speichern, sondern auch die Datenverarbeitungsgeschwindigkeit verbessern.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Als Datenprofi müssen Sie große Datenmengen aus verschiedenen Quellen verarbeiten. Dies kann Herausforderungen für das Datenmanagement und die Analyse darstellen. Glücklicherweise können zwei AWS -Dienste helfen: AWS -Kleber und Amazon Athena.

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Nein, MySQL kann keine direkt zu SQL Server herstellen. Sie können jedoch die folgenden Methoden verwenden, um die Dateninteraktion zu implementieren: Verwenden Sie Middleware: Exportieren Sie Daten von MySQL in das Zwischenformat und importieren sie dann über Middleware in SQL Server. Verwenden von Datenbank -Linker: Business -Tools bieten eine freundlichere Oberfläche und erweiterte Funktionen, die im Wesentlichen weiterhin über Middleware implementiert werden.
