Detaillierte Erklärung von read_excel in Python 2.7 Pandas
Dieser Artikel stellt hauptsächlich die detaillierte Erklärung von read_excel in Python 2.7 vor. Jetzt kann ich ihn mit Ihnen teilen.
Importieren Pandas-Modul:
import pandas as pd
Verwenden Sie import, um das Pandas-Modul zu lesen, und verwenden Sie der Einfachheit halber die Abkürzung pd.
Lesen Sie die zu verarbeitende Excel-Datei:
df = pd.read_excel('log.xls')
Lesen Sie mit read_excel Funktion Geben Sie die Excel-Datei ein, die durch den Pfad ersetzt werden muss, in dem sich die Excel-Datei befindet. Nach dem Lesen wird es zu einem Pandas-DataFrame-Objekt. DataFrame ist eine spaltenorientierte zweidimensionale Tabellenstruktur und enthält Listen und Zeilenbeschriftungen. Operationen an Excel-Dateien werden in Operationen an DataFrame umgewandelt. Wenn ein Excel mehrere Tabellen enthält und Sie nur eine davon lesen möchten, können Sie außerdem Folgendes tun:
df = pd.read_excel('log.xls', sheetname=1)
Ein Parameter sheetname wurde hinzugefügt, der darauf hinweist um welche Zahl es sich handelt, beginnend bei 0. Was ich oben eingestellt habe, ist 1, was die zweite Tabelle ist.
Nach dem Lesen können Sie zunächst die Kopfzeileninformationen und den Datentyp jeder Spalte überprüfen:
df.dtypes
Die Ausgabe ist wie folgt:
Member object Unnamed: 1 float64 Unnamed: 2 float64 Unnamed: 3 float64 Unnamed: 4 float64 Unnamed: 5 float64 家内外活动类型 object Unnamed: 7 object activity object dtype: object
Extrahieren Sie die letzte Datenzeile, die kontinuierlich für jedes Mitglied angezeigt wird:
new_df = df.drop_duplicates(subset='Member', keep='last')
Die obige Anweisung bedeutet, redundante Zeilen basierend auf dem Mitgliedsfeld zu entfernen und die letzte Datenzeile in derselben Zeile beizubehalten. Dadurch werden die Daten der letzten Zeile jedes Mitglieds abgerufen und der gefilterte DataFrame zurückgegeben.
Als nächstes müssen Sie die verarbeiteten Ergebnisse als Excel-Datei speichern:
out = pd.ExcelWriter('output.xls') new_df.to_excel(out) out.save()
output.xls gehört Ihnen Der zu speichernde Dateiname kann beliebig gewählt werden. Anschließend wird der Inhalt des DataFrame in der Datei gespeichert und die Datei schließlich auf der Systemfestplatte gespeichert.
Als nächstes sehen Sie eine neue Datei im aktuellen Verzeichnis, die direkt mit Excel geöffnet und angezeigt werden kann.
Pandas bietet auch viele APIs. Sie können die API-Dokumentation durchsuchen und die entsprechende Funktion finden, um die Aufgabe entsprechend der spezifischen Aufgabe abzuschließen.
Anbei: Ein vollständiges Beispiel
#coding=utf-8 import pandas as pd # 读入excel文件中的第2个表 df = pd.read_excel('log.xls', sheetname=1) # 查看表的数据类型 print df.dtypes # 查看Member列的数据 print df['Member'] ''' # 新建一列,每一行的值是Member列和activity列相同行值的和 for i in df.index: df['activity_2'][i] = df['Member'][i] + df['activity'][i] ''' # 根据Member字段去除掉多余的行,并且保留相同行的最后一行数据 new_df = df.drop_duplicates(subset='Member', keep='last') # 导出结果 out = pd.ExcelWriter('output.xls') new_df.to_excel(out) out.save()
Das obige ist der detaillierte Inhalt vonDetaillierte Erklärung von read_excel in Python 2.7 Pandas. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP ist hauptsächlich prozedurale Programmierung, unterstützt aber auch die objektorientierte Programmierung (OOP). Python unterstützt eine Vielzahl von Paradigmen, einschließlich OOP, funktionaler und prozeduraler Programmierung. PHP ist für die Webentwicklung geeignet, und Python eignet sich für eine Vielzahl von Anwendungen wie Datenanalyse und maschinelles Lernen.

PHP eignet sich für Webentwicklung und schnelles Prototyping, und Python eignet sich für Datenwissenschaft und maschinelles Lernen. 1.PHP wird für die dynamische Webentwicklung verwendet, mit einfacher Syntax und für schnelle Entwicklung geeignet. 2. Python hat eine kurze Syntax, ist für mehrere Felder geeignet und ein starkes Bibliotheksökosystem.

VS -Code kann zum Schreiben von Python verwendet werden und bietet viele Funktionen, die es zu einem idealen Werkzeug für die Entwicklung von Python -Anwendungen machen. Sie ermöglichen es Benutzern: Installation von Python -Erweiterungen, um Funktionen wie Code -Abschluss, Syntax -Hervorhebung und Debugging zu erhalten. Verwenden Sie den Debugger, um Code Schritt für Schritt zu verfolgen, Fehler zu finden und zu beheben. Integrieren Sie Git für die Versionskontrolle. Verwenden Sie Tools für die Codeformatierung, um die Codekonsistenz aufrechtzuerhalten. Verwenden Sie das Lining -Tool, um potenzielle Probleme im Voraus zu erkennen.

VS -Code kann unter Windows 8 ausgeführt werden, aber die Erfahrung ist möglicherweise nicht großartig. Stellen Sie zunächst sicher, dass das System auf den neuesten Patch aktualisiert wurde, und laden Sie dann das VS -Code -Installationspaket herunter, das der Systemarchitektur entspricht und sie wie aufgefordert installiert. Beachten Sie nach der Installation, dass einige Erweiterungen möglicherweise mit Windows 8 nicht kompatibel sind und nach alternativen Erweiterungen suchen oder neuere Windows -Systeme in einer virtuellen Maschine verwenden müssen. Installieren Sie die erforderlichen Erweiterungen, um zu überprüfen, ob sie ordnungsgemäß funktionieren. Obwohl VS -Code unter Windows 8 möglich ist, wird empfohlen, auf ein neueres Windows -System zu upgraden, um eine bessere Entwicklungserfahrung und Sicherheit zu erzielen.

VS -Code -Erweiterungen stellen böswillige Risiken dar, wie das Verstecken von böswilligem Code, das Ausbeutetieren von Schwachstellen und das Masturbieren als legitime Erweiterungen. Zu den Methoden zur Identifizierung böswilliger Erweiterungen gehören: Überprüfung von Verlegern, Lesen von Kommentaren, Überprüfung von Code und Installation mit Vorsicht. Zu den Sicherheitsmaßnahmen gehören auch: Sicherheitsbewusstsein, gute Gewohnheiten, regelmäßige Updates und Antivirensoftware.

Python eignet sich besser für Anfänger mit einer reibungslosen Lernkurve und einer kurzen Syntax. JavaScript ist für die Front-End-Entwicklung mit einer steilen Lernkurve und einer flexiblen Syntax geeignet. 1. Python-Syntax ist intuitiv und für die Entwicklung von Datenwissenschaften und Back-End-Entwicklung geeignet. 2. JavaScript ist flexibel und in Front-End- und serverseitiger Programmierung weit verbreitet.

PHP entstand 1994 und wurde von Rasmuslerdorf entwickelt. Es wurde ursprünglich verwendet, um Website-Besucher zu verfolgen und sich nach und nach zu einer serverseitigen Skriptsprache entwickelt und in der Webentwicklung häufig verwendet. Python wurde Ende der 1980er Jahre von Guidovan Rossum entwickelt und erstmals 1991 veröffentlicht. Es betont die Lesbarkeit und Einfachheit der Code und ist für wissenschaftliche Computer, Datenanalysen und andere Bereiche geeignet.

Im VS -Code können Sie das Programm im Terminal in den folgenden Schritten ausführen: Erstellen Sie den Code und öffnen Sie das integrierte Terminal, um sicherzustellen, dass das Codeverzeichnis mit dem Terminal Working -Verzeichnis übereinstimmt. Wählen Sie den Befehl aus, den Befehl ausführen, gemäß der Programmiersprache (z. B. Pythons Python your_file_name.py), um zu überprüfen, ob er erfolgreich ausgeführt wird, und Fehler auflösen. Verwenden Sie den Debugger, um die Debugging -Effizienz zu verbessern.
