Heim > Web-Frontend > js-Tutorial > Einführung in den Code zur Implementierung eines Binärbaums in Javascript

Einführung in den Code zur Implementierung eines Binärbaums in Javascript

不言
Freigeben: 2018-08-22 11:17:04
Original
1551 Leute haben es durchsucht

Dieser Artikel bietet Ihnen eine Einführung in den Code zur Implementierung von Binärbäumen. Ich hoffe, dass er Ihnen als Referenz dienen wird.

Baum ist der grundlegende Wissenspunkt der Datenstruktur. Es gibt einen speziellen Binärbaum. Ich werde das Konzept des Baums hier nicht im Detail erklären Baum

1 .Knoten hinzufügen
3. Maximaler/minimaler Wert des Knotens
5 6. Post-Order-Traversal
7 .Finden Sie heraus, ob der angegebene Knoten existiert
8. Ob es sich um einen leeren Baum handelt

Lassen Sie uns ohne weiteres über den Code sprechen. Das erste ist die Grundeinheit Knotenklasse des Baums

/**
*left:左子树
*right:右子树
*value:节点值
*/
export default class BinaryNode {
	constructor(val) {
		this.value = val;
		this.left = null;
		this.right = null;
	}
}
Nach dem Login kopieren

Als nächstes folgt der binäre Baumklassencode

import BinaryNode from './BinaryNode'

export default class BinarySearchTree {
	constructor() {
		this.root = null;
		this.values = new Array();
	}

	/**
	 * [insert 插入节点]
	 * @param  {[type]} val [description]
	 * @return {[type]}     [description]
	 */
	insert(val) {
		this.values.push(val);
		let node = new BinaryNode(val);
		if (!this.root) {
			this.root = node;
		}else {
			this._insertNode(this.root, node);
		}
	}

	/**
	 * [remove 移除指定值]
	 * @param  {[*]} val [目标值]
	 * @return {[type]}     [description]
	 */
	remove(val) {
		this.root = this._removeNode(this.root, val);
	}

	/**
	 * [search 检索]
	 * @param  {[*]} val [被检索值]
	 * @return {[Boolean]}     [表示是否存在]
	 */
	search(val) {
		let values = this.inOrderTraverse();
		return values.includes(val);
	}

	/**
	 * [min 返回最小值]
	 * @return {[type]} [description]
	 */
	min() {
		let values = this.inOrderTraverse();
		return values[0];
	}

	/**
	 * [max 返回最大值]
	 * @return {[type]} [description]
	 */
	max() {
		let values = this.inOrderTraverse();
		return values[values.length - 1];
	}

	/**
	 * [isEmpty 是否为空二叉树]
	 * @return {Boolean}
	 */
	isEmpty() {
		return this.root === null;
	}

	/**
	 * [inOrderTraverse 中序遍历]
	 * @return {[Array]} [description]
	 */
	inOrderTraverse() {
		let result = new Array();
		this._inOrderTraverseNode(this.root, function(node) {
			result.push(node.value);
		})
		return result;
	}

	/**
	 * [preOrderTraverse 先序遍历]
	 * @return {[Array]} [description]
	 */
	preOrderTraverse() {
		let result = new Array();
		this._preOrderTraverseNode(this.root, function(node) {
			result.push(node.value);
		})
		return result;
	}

	/**
	 * [postOrderTraverse 后序遍历]
	 * @return {[Array]} [description]
	 */
	postOrderTraverse() {
		let result = new Array();
		this._postOrderTraverseNode(this.root, function(node) {
			result.push(node.value);
		})
		return result;
	}

	/**
	 * [_insertNode 在指定节点插入节点]
	 * @param  {[BinaryNode]} node    [目标节点]
	 * @param  {[BinaryNode]} newNode [待插入节点]
	 */
	_insertNode(node, newNode) {
		if (node.value > newNode.value) {
			if (node.left) {
				this._insertNode(node.left, newNode);
			}else {
				node.left = newNode;
			}
		}else {
			if (node.right) {
				this._insertNode(node.right, newNode);
			}else {
				node.right = newNode;
			}
		}
	}

	/**
	 * [_removeNode 移除节点递归]
	 * @param  {[BinaryNode]} node [当前节点]
	 * @param  {[*]} val  [要移的除节点值]
	 * @return {[BinaryNode]}      [当前节点]
	 */
	_removeNode(node, val) {
		if (node === null) {
			return node;
		}
		//递归寻找目标节点
		if (val < node.value) {
			this._removeNode(node.left, val);
			return node;
		}

		if (val > node.value) {
			this._removeNode(node.right, val);
			return node;
		}
		//找到目标节点
		if (val === node.value) {
			//为叶子节点
			if (node.left === null && node.right === null) {
				node = null;
				return node;
			}
			//只有一个子节点
			if (node.left === null) {
				node = node.right;
				return node;
			}else if (node.right === null) {
				node = node.left;
				return node;
			}
			//有两个子节点
			let min_node = this._findMinNode(node);
			node.value = min_node.value;
			node.right = this._removeNode(node.right, min_node.value);
			return node;
		}
	}

	/**
	 * [_findMinNode 查找最小节点]
	 * @param  {[BinaryNode]} node [当前节点]
	 * @return {[BinaryNode]}      [最小的节点]
	 */
	_findMinNode(node) {
		while(node && node.left) {
			node = node.left;
		}
		return node;
	}

	/**
	 * [_inOrderTraverseNode 中序遍历递归]
	 * @param  {[BinaryNode]}   node     [当前节点]
	 * @param  {Function} callback [回调函数]
	 * @return {[type]}            [description]
	 */
	_inOrderTraverseNode(node, callback) {
		if (node) {
			this._inOrderTraverseNode(node.left, callback);
			callback(node);
			this._inOrderTraverseNode(node.right, callback);
		}
	}

	/**
	 * [_preOrderTraverseNode 先序遍历递归]
	 * @param  {[BinaryNode]}   node     [当前节点]
	 * @param  {Function} callback [回调函数]
	 * @return {[type]}            [description]
	 */
	_preOrderTraverseNode(node, callback) {
		if (node) {
			callback(node);
			this._preOrderTraverseNode(node.left, callback);
			this._preOrderTraverseNode(node.right, callback);
		}
	}

	/**
	 * [_postOrderTraverseNode 后序遍历递归]
	 * @param  {[BinaryNode]}   node     [当前节点]
	 * @param  {Function} callback [回调函数]
	 * @return {[type]}            [description]
	 */
	_postOrderTraverseNode(node, callback) {
		if (node) {
			this._postOrderTraverseNode(node.left, callback);
			this._postOrderTraverseNode(node.right, callback);
			callback(node);
		}
	}
}
Nach dem Login kopieren

Die Funktionen jeder Funktion werden in den Kommentaren häufig verwendet, um den Baum zu durchlaufen. Die Rekursion ist hier relativ Das Finden der Maximal- und Minimalwerte ist hier einfach und es gibt keine rekursive Suche, aber die Maximal- und Minimalwerte werden beim sequentiellen Durchlaufen direkt abgerufen Tatsächlich ist der Code zum Finden des Minimalknotens auch als private Funktion geschrieben, wird jedoch nicht für die Suche nach Maximal- und Minimalwerten verwendet

Natürlich handelt es sich nur um einen einfachen Binärbaum, der dies kann kann auch auf einen AVL-Baum usw. aktualisiert werden, worauf ich hier nicht näher eingehen werde

Verwandte Empfehlungen:

Detaillierte Erläuterung der Verwendung des binären JS-Suchbaums


Detaillierte Erläuterung der Binärbaum-Traversierung in JS_Javascript-Fähigkeiten


Implementierungsmethoden der Pre-Order-, In-Order- und Post-Order-Traversal von Binärbäumen in JS

Das obige ist der detaillierte Inhalt vonEinführung in den Code zur Implementierung eines Binärbaums in Javascript. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage