Inhaltsverzeichnis
Stochastische Matrix
Heim Backend-Entwicklung PHP-Tutorial stochastische Matrix

stochastische Matrix

Sep 14, 2018 am 10:53 AM

Die Beispiele in diesem Artikel beschreiben Zufallsmatrizen. Teilen Sie es allen als Referenz mit. Die Details lauten wie folgt:

Stochastische Matrix

Kernalgorithmus ---PageRank Sortieralgorithmus [1][2 ], der die Beschreibung und Anwendung der Graphentheorie und Markov-Ketten in vielen Arbeiten beinhaltet [3][4][5], und der kritischste Satz, der mich immer verwirrt hat, ist „Eine stochastische Matrix hat einen Haupt-/Primäreigenwert.“ 1"[3][4][5][6][7][8]. Vielleicht ist es für diejenigen, die sich systematisch mit der Matrixtheorie befasst haben, sehr einfach und es lohnt sich nicht, sie gesondert zu diskutieren oder zu erklären. Und hier muss ich meine Unwissenheit eingestehen. Obwohl ich einige Diskussionen über die Eigenschaften von Matrizen in der fortgeschrittenen Algebra studiert habe, war ich noch nie mit der sogenannten stochastischen Matrix (Stochastische Matrix) in Berührung gekommen, geschweige denn mit ihren Eigenschaften. Daher habe ich intensiv versucht, relevante Literatur im Internet zu finden, aber die Ergebnisse waren nicht besonders ideal. Es gab keine detaillierte Einführung in Zufallsmatrizen und den Nachweis verwandter Eigenschaften. Ich denke, vielleicht ist einerseits meine Suchtechnologie noch nicht ausgereift, oder die Suchbegriffe sind ungenau, oder es mangelt an Informationen darüber im Internet. Hier möchte ich die relevanten Informationen, die ich kürzlich gesammelt habe, herausnehmen und meine Ideen für die zukünftige Verwendung sortieren. Es ist auch eine echte Aufzeichnung und Überwachung meines eigenen Lernens. Zufallsmatrix ist eigentlich eine Art nichtnegative Matrix (Nichtnegative Matrix

Nicht-negative Matrix bedeutet, dass alle Matrixelemente nicht negativ sind (

Nichtnegativ). Natürlich müssen nicht-negative Matrizen leicht von positiven Matrizen unterschieden werden (Positive Matrix). Nichtnegative Matrizen werden häufig in der Computermathematik, der Graphentheorie, der linearen Programmierung, der automatischen Steuerung und anderen Bereichen für ihre Eigenwerte verwendet, insbesondere für den maximalen Eigenwert (beachten Sie, dass das Maximum hier aus der Perspektive des Moduls oder des Konzepts des Absolutwerts gilt). ) Maximaler) Eigenwert, d. h. die Schätzung des Haupteigenwerts (Haupt-/Primäreigenwert) der Matrix ist von großer Bedeutung [9]. Die Zufallsmatrix ist so wichtig. Was für eine Matrix ist also eine Zufallsmatrix? Wenn Sie zufällig eine nicht negative Matrix erhalten, wie können Sie dann feststellen, ob es sich um eine Zufallsmatrix handelt? Die stochastische Matrix sollte eigentlich in eine zeilenstochastische Matrix (

Zeilenstochastikmatrix

) und eine spaltenstochastische Matrix (

Spaltenstochastikmatrix

) unterteilt werden. Eine Zeilenzufallsmatrix bezieht sich auf eine quadratische Matrix mit einer Zeilensumme gleich 1; eine Spaltenzufallsmatrix ist eine nicht negative Matrix, deren Spaltensumme gleich 1 ist. Dann ist eine nicht negative Matrix, die die Zeilen- und Spaltensummen von 1 erfüllt, eine doppelte stochastische Matrix (Doppelte stochastische Matrix), und die Identitätsmatrix ist eine doppelte stochastische Matrix. Aus Forschungssicht müssen wir tatsächlich nur die Eigenschaften der Zeilenmatrix untersuchen. Schließlich ist die Spaltenzufallsmatrix nur die transponierte Matrix der Zeilenzufallsmatrix. Daher basiert die folgende Diskussion vollständig auf Zeilenzufallsmatrizen. Da die Zeilensumme der Zufallsmatrix A 1 ist, ist unter der Annahme von e=(1,1,...,1) der Transponierungsvektor e' von e ein Eigenvektor der Matrix, entsprechend Der Eigenwert von A ist 1. Auf diese Weise besteht noch ein gewisser Abstand zum Beweis, dass der Haupteigenwert der Zufallsmatrix 1 ist. Nehmen Sie an, dass die n Eigenwerte von A λ(i) sind, wobei i=1,2,...,n. Wenn Sie beweisen möchten, dass die Eigenschaft wahr ist, müssen Sie beweisen, dass |λ(i)| Also habe ich nach relevanten Informationen gesucht und eine Nachricht im „Mathematik-Doktorandenforum“ gepostet. Die Antwort, die ich bekam, war, dass ich es grob gesagt beweisen muss Um es genauer zu beweisen, muss ich den

Perron-Frobenius-Theorm

[9][10][11][12] verwenden. Nach und nach tauchen neue Konzepte und Methoden auf, und es scheint, dass ein systematisches Studium numerischer Methoden und der numerischen Berechnungstheorie erforderlich ist. Die gefundenen Informationen [10] zeigen, dass der Spektralradius jeder Matrix nicht größer ist als jede induzierte Matrixnorm der Matrix und der

L1-Norm

-Wert der Zufallsmatrix dann 1 ist Der Spektralradius (ist äquivalent gesehen der Haupteigenwert) ist nicht größer als 1, und da 1 ein Eigenwert von A ist, ist es unmöglich, einen Eigenwert mit einem Absolutwert größer als 1 zu haben: 1 ist tatsächlich der Haupteigenwert des Zufalls Matrix A. Dann entspricht der Beweis der oben genannten Eigenschaften der Schlussfolgerung in den Beweisdaten [10]. Tatsächlich ist „der Spektralradius einer Matrix in einem beliebigen komplexen Feld nicht größer als eine ihrer induzierten Normen“ nur eine Grundeigenschaft von Matrizen. Der spezifische Beweis ist in der folgenden Abbildung dargestellt:

Gemäß den obigen Beweisergebnissen ist ersichtlich, dass für jede Zeilenzufallsmatrix der Spektralradius 1 beträgt Das heißt, der maximale Eigenwert ist 1. Es ist bewiesen, dass .

stochastische Matrix Es ist ersichtlich, dass eine kleine Eigenschaft der Matrix tatsächlich manchmal ein schwieriges Problem für Menschen ist, die die Matrixtheorie nicht systematisch studiert haben. Wenn Sie in die Branche einsteigen möchten, sollten Sie die Regeln verstehen. Wenn Sie einsteigen möchten, sollten Sie das Handwerk beherrschen.

Das Verhältnis des Haupteigenwerts der Zufallsmatrix zum zweitgrößten Eigenwert ist ein grundlegendes Maß für die Konvergenzgeschwindigkeit des Potenzverfahrens. Es gibt viele Möglichkeiten, den PageRank zu berechnen, und es gibt unzählige Studien dazu. Die traditionellste Methode ist natürlich die Verwendung der Power-Methode zur Bestimmung des PageRank-Werts jeder Webseite in die Datenbank gekrochen. Aufgrund der großen Anzahl von Webseiten ist die Berücksichtigung der Konvergenzgeschwindigkeit der Leistungsmethode keine überflüssige und nutzlose Analyse. Die „spektrale Lücke“ (Eigengap) der beiden Eigenwerte wird hauptsächlich zur Messung der Stabilität des PR-Werts verwendet, der mit der Potenzmethode ermittelt wurde. Unter diesem Gesichtspunkt spielt die Eigenwertanalyse eine Schlüsselrolle für das Verständnis des PageRank-Algorithmus.

Verwandte Empfehlungen:

PHP-Version der Spiralmatrix (von innen nach außen)

PHP implementiert N*M Zeichen Matrix 90-Grad-Drehung

Das obige ist der detaillierte Inhalt vonstochastische Matrix. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

CakePHP-Projektkonfiguration CakePHP-Projektkonfiguration Sep 10, 2024 pm 05:25 PM

In diesem Kapitel werden wir die Umgebungsvariablen, die allgemeine Konfiguration, die Datenbankkonfiguration und die E-Mail-Konfiguration in CakePHP verstehen.

PHP 8.4 Installations- und Upgrade-Anleitung für Ubuntu und Debian PHP 8.4 Installations- und Upgrade-Anleitung für Ubuntu und Debian Dec 24, 2024 pm 04:42 PM

PHP 8.4 bringt mehrere neue Funktionen, Sicherheitsverbesserungen und Leistungsverbesserungen mit einer beträchtlichen Menge an veralteten und entfernten Funktionen. In dieser Anleitung wird erklärt, wie Sie PHP 8.4 installieren oder auf PHP 8.4 auf Ubuntu, Debian oder deren Derivaten aktualisieren. Obwohl es möglich ist, PHP aus dem Quellcode zu kompilieren, ist die Installation aus einem APT-Repository wie unten erläutert oft schneller und sicherer, da diese Repositorys in Zukunft die neuesten Fehlerbehebungen und Sicherheitsupdates bereitstellen.

CakePHP Datum und Uhrzeit CakePHP Datum und Uhrzeit Sep 10, 2024 pm 05:27 PM

Um in cakephp4 mit Datum und Uhrzeit zu arbeiten, verwenden wir die verfügbare FrozenTime-Klasse.

CakePHP arbeitet mit Datenbank CakePHP arbeitet mit Datenbank Sep 10, 2024 pm 05:25 PM

Das Arbeiten mit der Datenbank in CakePHP ist sehr einfach. In diesem Kapitel werden wir die CRUD-Operationen (Erstellen, Lesen, Aktualisieren, Löschen) verstehen.

CakePHP-Datei hochladen CakePHP-Datei hochladen Sep 10, 2024 pm 05:27 PM

Um am Datei-Upload zu arbeiten, verwenden wir den Formular-Helfer. Hier ist ein Beispiel für den Datei-Upload.

CakePHP-Routing CakePHP-Routing Sep 10, 2024 pm 05:25 PM

In diesem Kapitel lernen wir die folgenden Themen im Zusammenhang mit dem Routing kennen.

Besprechen Sie CakePHP Besprechen Sie CakePHP Sep 10, 2024 pm 05:28 PM

CakePHP ist ein Open-Source-Framework für PHP. Es soll die Entwicklung, Bereitstellung und Wartung von Anwendungen erheblich vereinfachen. CakePHP basiert auf einer MVC-ähnlichen Architektur, die sowohl leistungsstark als auch leicht zu verstehen ist. Modelle, Ansichten und Controller gu

CakePHP erstellt Validatoren CakePHP erstellt Validatoren Sep 10, 2024 pm 05:26 PM

Der Validator kann durch Hinzufügen der folgenden zwei Zeilen im Controller erstellt werden.

See all articles