Heim > Backend-Entwicklung > Python-Tutorial > Was sind die Array-Datentypen von Numpy in Python? (Detaillierte Code-Erklärung)

Was sind die Array-Datentypen von Numpy in Python? (Detaillierte Code-Erklärung)

青灯夜游
Freigeben: 2018-10-29 17:59:21
nach vorne
5958 Leute haben es durchsucht

Der Inhalt dieses Artikels besteht darin, Ihnen die Array-Datentypen von Numpy in Python vorzustellen. (Detaillierte Code-Erklärung). Es hat einen gewissen Referenzwert. Freunde in Not können sich darauf beziehen. Ich hoffe, es wird Ihnen hilfreich sein.

 import numpy as np

#创建
# 创建一维数组
a = np.array([1, 2, 3])
print(a)
'''
[1 2 3]
'''
# 创建多维数组
b = np.array([(1, 2, 3), (4, 5, 6)])
print(b)
'''
[[1 2 3]
 [4 5 6]]
'''
# 创建等差一维数组
c = np.arange(1, 5, 0.5)
print(c)
'''
[1.  1.5 2.  2.5 3.  3.5 4.  4.5]
'''
# 创建随机数数组
d = np.random.random((2, 2))
print(d)
'''
[[0.65746941 0.09766114]
 [0.15024283 0.9212932 ]]
 '''
# 创建一个确定起始点和终止点和个数的等差一维数组
##包含终止点
e = np.linspace(1, 2, 10)
print(e)
'''
[1.         1.11111111 1.22222222 1.33333333 1.44444444 1.55555556 1.66666667 1.77777778 1.88888889 2.        ]
 '''
##不包含终止点
f = np.linspace(1, 2, 10, endpoint=False)
print(f)
'''
[1.  1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9]
'''
#创建一个全为‘1’的 数组
g = np.ones([2,3])
print(g)
'''
[[1. 1. 1.]
 [1. 1. 1.]]
 '''
#创建一个全为‘0’的数组
h = np.zeros([2,3])
print(h)
'''
[[0. 0. 0.]
 [0. 0. 0.]]
 '''
#通过函数创建数组
k = np.fromfunction(lambda i,j :(i+1)*(j+1),(9,9))
print(k)
'''
[[ 1.  2.  3.  4.  5.  6.  7.  8.  9.]
 [ 2.  4.  6.  8. 10. 12. 14. 16. 18.]
 [ 3.  6.  9. 12. 15. 18. 21. 24. 27.]
 [ 4.  8. 12. 16. 20. 24. 28. 32. 36.]
 [ 5. 10. 15. 20. 25. 30. 35. 40. 45.]
 [ 6. 12. 18. 24. 30. 36. 42. 48. 54.]
 [ 7. 14. 21. 28. 35. 42. 49. 56. 63.]
 [ 8. 16. 24. 32. 40. 48. 56. 64. 72.]
 [ 9. 18. 27. 36. 45. 54. 63. 72. 81.]]
 '''
##############
#获取数组的相关属性
a = np.array([(1,2,3),(4,5,6)])
print(a)
##获取数组的形状
print(a.shape)
'''
(2, 3)
表示:该数组为2行3列
'''
## 改变数组的形状
b = a.reshape(3,2)
print(b)
'''
[[1 2]
 [3 4]
 [5 6]]
 将a数组的数据由2行3列变成3行2列得到b数组,但是a数组没有发生改变
 '''
a.resize(3,2)
print(a)
'''
[[1 2]
 [3 4]
 [5 6]]
 a数组由2行3列变成3行2列,此时,a数组的形状发生了改变
 '''
##############
#数组切片操作
a = np.array([(1,2,3),(4,5,6)])
print(a)
'''
[[1 2 3]
 [4 5 6]]
 '''
##获取数组的第二行
print(a[1])
'''
[4 5 6]
'''
##获取数组的前两行
print(a[0:2])
'''
[[1 2 3]
 [4 5 6]]
'''
##获取数组的前两列的值
print(a[:,[0,1]])
'''
[[1 2]
 [4 5]]
 '''
##获取数组的第1行的前两列的值
print(a[0,[0,1]])
'''
[1 2]
'''
##遍历数组
for row in a:
    print(row)
'''
[1 2 3]
[4 5 6]
'''
#######################
##数组拼接
a = np.array([1,2,3])
b = np.array([4,5,6])
#垂直方向的拼接
c = np.vstack((a,b))
print(c)
'''
[[1 2 3]
 [4 5 6]]
'''
#竖直方向的拼接
d = np.hstack((a,b))
print(d)
'''
[1 2 3 4 5 6]
'''
#####################
##数组的计算
a = np.array([1,2,3])
b = np.array([4,5,6])
#加法
c = a+b
print(c)
'''
[5 7 9]
'''
#减法
d= a - b
print(d)
'''
[-3 -3 -3]
'''
#乘法
e = a * b
print(e)
'''
[ 4 10 18]
'''
#求和
f = np.array([(1,2,3),(4,5,6)])
print(f.sum())
'''
21
'''
#按列求和
print(f.sum(axis=0))
'''
[5 7 9]
'''
#按行求和
print(f.sum(axis=1))
'''
[ 6 15]
'''
#最小值的值
print(f.min())
'''
1
'''
#最小值的索引
print(f.argmin())
'''
0
'''
#最大值的值
print(f.max())
'''
6
'''
print(f.argmax())
'''
5
'''
#平均值
print(f.mean())
'''
3.5
'''
#方差
print(f.var())
'''
2.9166666666666665
'''
#标准差
print(f.std())
'''
1.707825127659933
'''
#############
# 线性代数的运算
#矩阵内积
np.dot()
#行列式
np.linalg.det()
# 逆矩阵
np.linalg.inv()
#多元一次方程组求根
np.linalg.solve()
#求特征值和特征向量
np.linalg.eig()
Nach dem Login kopieren

Das obige ist der detaillierte Inhalt vonWas sind die Array-Datentypen von Numpy in Python? (Detaillierte Code-Erklärung). Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Verwandte Etiketten:
Quelle:cnblogs.com
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage