


Einführung in die Zusammenführungssortierung in JavaScript (Codebeispiel)
Zusammenführungssortierung (MERGE-SORT) ist ein effektiver Sortieralgorithmus, der auf Zusammenführungsoperationen basiert. Der Algorithmus verwendet die Divide-and-Conquer-Methode (pide andConquer) ist eine sehr typische Anwendung. Führen Sie die bereits geordneten Teilsequenzen zusammen, um eine vollständig geordnete Sequenz zu erhalten. Ordnen Sie also zuerst jede Teilsequenz und dann die Teilsequenzsegmente. Wenn zwei geordnete Listen zu einer geordneten Liste zusammengeführt werden, spricht man von einer bidirektionalen Zusammenführung.
Zusammenführungssortierung
Zusammenführungssortierung ist eine sehr stabile Sortiermethode und ihre zeitliche Komplexität beträgt NlogN in Bezug auf Durchschnitt, Beste und Schlechteste.
Zwei Schritte der Zusammenführungssortierung
Zuerst teilen, bis nur noch eine Zahl vorhanden ist
Teilung abgeschlossen. Danach beginnen die rekursive Zusammenführung
Split-Prozess
Wie Sie in der obigen Abbildung sehen können, führen Sie die Zusammenführungssortierung An durch Das Array wird in zwei Teile geteilt und die Teilung wird beendet, wenn nur eine Zahl vorhanden ist.
Dann ist der Aufteilungscode sehr einfach, nämlich einen Zeiger q zu erhalten, der auf die Mitte zeigt, und das Array in zwei Teile aufzuteilen: (Start, p) und (p, Ende).
p stellt den Anfangsindex des Arrays dar
r stellt den Endindex des Arrays dar
function pide(p, r){ return Math.floor( (p + r) / 2 ); }
Der Zusammenführungsprozess
Der Zusammenführungsprozess ist wie im Bild oben gezeigt
Traverse zwei Datensätze
Vergleichen Sie die Größen
Der kleinere Wert wird herausgenommen und an die erste Position gesetzt
Zum Beispiel:
Angenommen, die aktuellen Daten von Array A sind [2,5,1,3]
Nachher unsere Aufteilung wird (0,2),(2,4);
Wir erhalten zwei durch A.slice(0,2) und A.slice(2,4) => Arrays A1[2,5] und A2[1,3]
Dann durchlaufen wir das Array [2,5,1,3] und zum ersten Mal wird den Vergleich beider Seiten erhalten. Die kleine Zahl ist 1, das zweite Mal ist 2, das dritte Mal ist 3 und das vierte Mal ist 5
function merge(A, p, q, r){ const A1 = A.slice(p, q); const A2 = A.slice(q, r); // 哨兵,往A1和A2里push一个最大值,比如防止A1里的数都比较小,导致第三次遍历某个数组里没有值 A1.push(Number.MAX_SAFE_INTEGER); A2.push(Number.MAX_SAFE_INTEGER); // 循环做比较,每次取出较小的那个值 for (let i = p, j = 0, k = 0; i <h3 id="Hauptprogramm">Hauptprogramm</h3><p>Das Hauptprogramm besteht darin, die obige Operation rekursiv zu wiederholen </p><pre class="brush:php;toolbar:false"> function merge_sort(A, p = 0, r) { r = r || A.length; if (r - p === 1) { return; } const q = pide(p, r); merge_sort(A, p, q); merge_sort(A, q, r); merge(A, p, q, r); return A; }
Vollständiger Code
function pide(p, r) { return Math.floor((p + r) / 2); } function merge(A, p, q, r) { const A1 = A.slice(p, q); const A2 = A.slice(q, r); A1.push(Number.MAX_SAFE_INTEGER); A2.push(Number.MAX_SAFE_INTEGER); for (let i = p, j = 0, k = 0; i <p class="comments-box-content"></p>
Das obige ist der detaillierte Inhalt vonEinführung in die Zusammenführungssortierung in JavaScript (Codebeispiel). Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Oben geschrieben und das persönliche Verständnis des Autors: Derzeit spielt das Wahrnehmungsmodul im gesamten autonomen Fahrsystem eine entscheidende Rolle Das Steuermodul im autonomen Fahrsystem trifft zeitnahe und korrekte Urteile und Verhaltensentscheidungen. Derzeit sind Autos mit autonomen Fahrfunktionen in der Regel mit einer Vielzahl von Dateninformationssensoren ausgestattet, darunter Rundumsichtkamerasensoren, Lidar-Sensoren und Millimeterwellenradarsensoren, um Informationen in verschiedenen Modalitäten zu sammeln und so genaue Wahrnehmungsaufgaben zu erfüllen. Der auf reinem Sehen basierende BEV-Wahrnehmungsalgorithmus wird von der Industrie aufgrund seiner geringen Hardwarekosten und einfachen Bereitstellung bevorzugt, und seine Ausgabeergebnisse können problemlos auf verschiedene nachgelagerte Aufgaben angewendet werden.

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Die unterste Ebene der C++-Sortierfunktion verwendet die Zusammenführungssortierung, ihre Komplexität beträgt O(nlogn) und bietet verschiedene Auswahlmöglichkeiten für Sortieralgorithmen, einschließlich schneller Sortierung, Heap-Sortierung und stabiler Sortierung.

Die Konvergenz von künstlicher Intelligenz (KI) und Strafverfolgung eröffnet neue Möglichkeiten zur Kriminalprävention und -aufdeckung. Die Vorhersagefähigkeiten künstlicher Intelligenz werden häufig in Systemen wie CrimeGPT (Crime Prediction Technology) genutzt, um kriminelle Aktivitäten vorherzusagen. Dieser Artikel untersucht das Potenzial künstlicher Intelligenz bei der Kriminalitätsvorhersage, ihre aktuellen Anwendungen, die Herausforderungen, denen sie gegenübersteht, und die möglichen ethischen Auswirkungen der Technologie. Künstliche Intelligenz und Kriminalitätsvorhersage: Die Grundlagen CrimeGPT verwendet Algorithmen des maschinellen Lernens, um große Datensätze zu analysieren und Muster zu identifizieren, die vorhersagen können, wo und wann Straftaten wahrscheinlich passieren. Zu diesen Datensätzen gehören historische Kriminalstatistiken, demografische Informationen, Wirtschaftsindikatoren, Wettermuster und mehr. Durch die Identifizierung von Trends, die menschliche Analysten möglicherweise übersehen, kann künstliche Intelligenz Strafverfolgungsbehörden stärken

01Ausblicksübersicht Derzeit ist es schwierig, ein angemessenes Gleichgewicht zwischen Detektionseffizienz und Detektionsergebnissen zu erreichen. Wir haben einen verbesserten YOLOv5-Algorithmus zur Zielerkennung in hochauflösenden optischen Fernerkundungsbildern entwickelt, der mehrschichtige Merkmalspyramiden, Multierkennungskopfstrategien und hybride Aufmerksamkeitsmodule verwendet, um die Wirkung des Zielerkennungsnetzwerks in optischen Fernerkundungsbildern zu verbessern. Laut SIMD-Datensatz ist der mAP des neuen Algorithmus 2,2 % besser als YOLOv5 und 8,48 % besser als YOLOX, wodurch ein besseres Gleichgewicht zwischen Erkennungsergebnissen und Geschwindigkeit erreicht wird. 02 Hintergrund und Motivation Mit der rasanten Entwicklung der Fernerkundungstechnologie wurden hochauflösende optische Fernerkundungsbilder verwendet, um viele Objekte auf der Erdoberfläche zu beschreiben, darunter Flugzeuge, Autos, Gebäude usw. Objekterkennung bei der Interpretation von Fernerkundungsbildern

1. Hintergrund des Baus der 58-Portrait-Plattform Zunächst möchte ich Ihnen den Hintergrund des Baus der 58-Portrait-Plattform mitteilen. 1. Das traditionelle Denken der traditionellen Profiling-Plattform reicht nicht mehr aus. Der Aufbau einer Benutzer-Profiling-Plattform basiert auf Data-Warehouse-Modellierungsfunktionen, um Daten aus mehreren Geschäftsbereichen zu integrieren, um genaue Benutzerporträts zu erstellen Und schließlich muss es über Datenplattformfunktionen verfügen, um Benutzerprofildaten effizient zu speichern, abzufragen und zu teilen sowie Profildienste bereitzustellen. Der Hauptunterschied zwischen einer selbst erstellten Business-Profiling-Plattform und einer Middle-Office-Profiling-Plattform besteht darin, dass die selbst erstellte Profiling-Plattform einen einzelnen Geschäftsbereich bedient und bei Bedarf angepasst werden kann. Die Mid-Office-Plattform bedient mehrere Geschäftsbereiche und ist komplex Modellierung und bietet allgemeinere Funktionen. 2.58 Benutzerporträts vom Hintergrund der Porträtkonstruktion im Mittelbahnsteig 58

JavaScript-Tutorial: So erhalten Sie HTTP-Statuscode. Es sind spezifische Codebeispiele erforderlich. Vorwort: Bei der Webentwicklung ist häufig die Dateninteraktion mit dem Server erforderlich. Bei der Kommunikation mit dem Server müssen wir häufig den zurückgegebenen HTTP-Statuscode abrufen, um festzustellen, ob der Vorgang erfolgreich ist, und die entsprechende Verarbeitung basierend auf verschiedenen Statuscodes durchführen. In diesem Artikel erfahren Sie, wie Sie mit JavaScript HTTP-Statuscodes abrufen und einige praktische Codebeispiele bereitstellen. Verwenden von XMLHttpRequest

Oben geschrieben & Das persönliche Verständnis des Autors ist, dass im autonomen Fahrsystem die Wahrnehmungsaufgabe eine entscheidende Komponente des gesamten autonomen Fahrsystems ist. Das Hauptziel der Wahrnehmungsaufgabe besteht darin, autonome Fahrzeuge in die Lage zu versetzen, Umgebungselemente wie auf der Straße fahrende Fahrzeuge, Fußgänger am Straßenrand, während der Fahrt angetroffene Hindernisse, Verkehrszeichen auf der Straße usw. zu verstehen und wahrzunehmen und so flussabwärts zu helfen Module Treffen Sie richtige und vernünftige Entscheidungen und Handlungen. Ein Fahrzeug mit autonomen Fahrfähigkeiten ist in der Regel mit verschiedenen Arten von Informationserfassungssensoren ausgestattet, wie z. B. Rundumsichtkamerasensoren, Lidar-Sensoren, Millimeterwellenradarsensoren usw., um sicherzustellen, dass das autonome Fahrzeug die Umgebung genau wahrnehmen und verstehen kann Elemente, die es autonomen Fahrzeugen ermöglichen, beim autonomen Fahren die richtigen Entscheidungen zu treffen. Kopf
