Heim Backend-Entwicklung Python-Tutorial Detaillierte Einführung in den KNN-Algorithmus (k-Nearest-Neighbor-Algorithmus) in Python (mit Beispielen)

Detaillierte Einführung in den KNN-Algorithmus (k-Nearest-Neighbor-Algorithmus) in Python (mit Beispielen)

Jan 14, 2019 am 11:24 AM
python 数据分析

Dieser Artikel bietet Ihnen eine detaillierte Einführung in den KNN-Algorithmus (k-Nearest-Neighbor-Algorithmus) (mit Beispielen). Ich hoffe, dass er für Sie hilfreich ist . hat geholfen.

Der KNN-Algorithmus ist ein Datenklassifizierungsalgorithmus. Die Kategorie der k-nächsten Nachbarndaten aus der Stichprobe stellt die Kategorie der Stichprobe dar und wird daher auch als k-nächster-Nachbarn-Algorithmus bezeichnet. Der KNN-Algorithmus ist eine der einfachsten Methoden im Data Mining und lässt sich grob in die folgenden Schritte unterteilen:

  • Trainingsdaten: Daten aller Datenkategorien im Originaldatensatz.

  • Testdaten: Das Datenbeispiel, das wir zum Testen verwenden werden.

  • Verarbeitungsdaten

Die Testdaten, die wir erhalten, liegen normalerweise in anderen Dimensionen vor als die Trainingsdaten. Zu diesem Zeitpunkt müssen wir die Daten aktualisieren Testdaten Die Dimension ist dieselbe wie bei den Trainingsdaten. Pythons Numpy verfügt über eine Tile()-Funktion, die uns helfen kann, die Dimension der Testdaten zu erhöhen.

  • Vektorisieren Sie die Daten

Nachdem die Dimensionalität der Testdaten erhöht wurde, müssen wir den Abstand vom Probenpunkt berechnen Um die Daten zu diesem Zeitpunkt zu vektorisieren, ist die sogenannte Vektorisierung sehr einfach, dh das Subtrahieren zweier Daten derselben Dimension.

  • Berechnen Sie den euklidischen Abstand

Der euklidische Abstand, also der euklidische Abstand, kann mit dem Satz des Pythagoras berechnet werden Jeder Vektor in der Vektorgruppe, die durch Subtrahieren der Testdaten und Trainingsdaten erhalten wird, kann verwendet werden, um eine Vektorgruppe zu erhalten, die aus Abständen besteht.

  • Klassifizieren Sie nach der Entfernung

Wählen Sie k Daten mit dem kleinsten Abstand vom Abtastpunkt aus und zählen Sie, welche Datenkategorien unter diesen k Daten enthalten sind Durch die höchste Häufigkeit des Auftretens kann die Datenkategorie des Stichprobenpunkts bestimmt werden.

Algorithmusimplementierung:

1. Zuerst müssen wir Numpy und Operator einführen, from numpy import * und import operator eingeben.

2. Als nächstes müssen wir eine Knn-Funktion definieren. In der Knn-Funktion müssen wir vier Parameter einführen, nämlich k, Trainingsdaten, Testdaten und Datenkategorie.

3. Als nächstes müssen wir eine Dimensionsverbesserungsoperation für die Daten durchführen. Wir müssen die Funktion „kachel(a,(b,c))“ unter „numpy“ verwenden Erweiterungsoperation, also Testdaten, b sind die Zeilendaten, die auf die Testdaten aktualisiert werden sollen, und c sind die Spaltendaten, die auf die Testdaten aktualisiert werden sollen.

Detaillierte Einführung in den KNN-Algorithmus (k-Nearest-Neighbor-Algorithmus) in Python (mit Beispielen)

4. In der vorherigen Operation müssen wir im Allgemeinen die Anzahl der Zeilen und Spalten der Trainingsdaten ermitteln Um die Funktion „shape()“ zu verwenden, gibt die Funktion „shape()“ ein Tupel zurück, das aus Zeilen und Spalten der Trainingsdaten besteht. Wenn wir die Anzahl der Zeilen oder Spalten der Trainingsdaten wissen möchten, müssen wir nur über darauf verweisen Array-Element-Index.

Detaillierte Einführung in den KNN-Algorithmus (k-Nearest-Neighbor-Algorithmus) in Python (mit Beispielen)

5 Nachdem die Dimensionen der Daten gleich sind, müssen wir die beiden Daten subtrahieren, um einen Vektor zu erhalten, und dann die Summe berechnen der Quadrate jedes Werts dieses Vektors Die Quadratwurzel von ist der Abstand zwischen den Testdaten und den Trainingsdaten und ruft dann die Funktion argsort() auf, um die Abstände in aufsteigender Reihenfolge zu sortieren. Diese Funktion gibt jedoch den Index des Arrays zurück Element.

Detaillierte Einführung in den KNN-Algorithmus (k-Nearest-Neighbor-Algorithmus) in Python (mit Beispielen)

6. Um die Anzahl des Vorkommens verschiedener Datenkategorien intuitiv zu erkennen, müssen wir ein leeres Wörterbuch zum Speichern einrichten Nachdem wir die Daten erhalten haben, müssen wir das Wörterbuch in absteigender Reihenfolge nach der Anzahl der Vorkommen verschiedener Datenkategorien sortieren und dann den ersten Wert des Wörterbuchs zurückgeben, um die Datenkategorie der Testdaten zu erhalten.

7. Der Algorithmuscode lautet wie folgt:

from numpy import *
import operator
def knn(k, test_data, train_data, labels):
    train_size = train_data.shape[0]    #获取训练数据的行数
    test_size = tile(test_data, (train_size, 1))    #将测试数据的行升维
    minus = test_size-train_data    #得到向量
    sq_minus = minus**2
    sum_sq_minus = sq_minus.sum(axis=1)        #得到平方后的每个数组内元素的和
    distc = sum_sq_minus**0.5
    sort_distc = distc.argsort()    #将距离按升序排列
    static = {}
    for i in range(0, k):
        vote = labels[sort_distc[i]]    #获取数据类型
        static[vote] = static.get(vote, 0)+1    #统计每个数据类型的出现次数
    sort_static = sorted(static.items(), key=operator.itemgetter(1), reverse=True)    #将字典中的元素按出现次数降序排列
    return sort_static[0][0]    #返回出现次数最多的数据类型
Nach dem Login kopieren

8 Das Wörterbuch muss im Algorithmus sortiert werden, daher muss die Funktion sorted() verwendet werden hat drei Parameter, nämlich items.itemgetter(), reverse, die Standardsortierung ist aufsteigend. Wenn wir in absteigender Reihenfolge sortieren möchten, müssen wir den dritten Parameter auf True setzen die Werte des Wörterbuchs, daher müssen wir sorted(static.items(), key=operator.itemgetter(1), reverse=True) eingeben. Wenn der Wert in der Funktion „operator.itemgetter()“ 1 ist, wird er nach den Werten des Wörterbuchs sortiert, und wenn der Wert 0 ist , es ist nach den Schlüsseln des Wörterbuchs sortiert.

Detaillierte Einführung in den KNN-Algorithmus (k-Nearest-Neighbor-Algorithmus) in Python (mit Beispielen)

9 Der Zugriff auf Elemente nach dem Sortieren ist derselbe wie der Zugriff auf zweidimensionale Array-Elemente

Detaillierte Einführung in den KNN-Algorithmus (k-Nearest-Neighbor-Algorithmus) in Python (mit Beispielen)

Das obige ist der detaillierte Inhalt vonDetaillierte Einführung in den KNN-Algorithmus (k-Nearest-Neighbor-Algorithmus) in Python (mit Beispielen). Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat -Befehle und wie man sie benutzt
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

PHP und Python: Vergleich von zwei beliebten Programmiersprachen PHP und Python: Vergleich von zwei beliebten Programmiersprachen Apr 14, 2025 am 12:13 AM

PHP und Python haben jeweils ihre eigenen Vorteile und wählen nach den Projektanforderungen. 1.PHP ist für die Webentwicklung geeignet, insbesondere für die schnelle Entwicklung und Wartung von Websites. 2. Python eignet sich für Datenwissenschaft, maschinelles Lernen und künstliche Intelligenz mit prägnanter Syntax und für Anfänger.

Wie Debian Readdir sich in andere Tools integriert Wie Debian Readdir sich in andere Tools integriert Apr 13, 2025 am 09:42 AM

Die Readdir -Funktion im Debian -System ist ein Systemaufruf, der zum Lesen des Verzeichnisgehalts verwendet wird und häufig in der C -Programmierung verwendet wird. In diesem Artikel wird erläutert, wie Readdir in andere Tools integriert wird, um seine Funktionalität zu verbessern. Methode 1: Kombinieren Sie C -Sprachprogramm und Pipeline zuerst ein C -Programm, um die Funktion der Readdir aufzurufen und das Ergebnis auszugeben:#include#include#includeIntmain (intargc, char*argv []) {Dir*Dir; structDirent*Eintrag; if (argc! = 2) {{

Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Apr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

So konfigurieren Sie den HTTPS -Server in Debian OpenSSL So konfigurieren Sie den HTTPS -Server in Debian OpenSSL Apr 13, 2025 am 11:03 AM

Das Konfigurieren eines HTTPS -Servers auf einem Debian -System umfasst mehrere Schritte, einschließlich der Installation der erforderlichen Software, der Generierung eines SSL -Zertifikats und der Konfiguration eines Webservers (z. B. Apache oder NGINX) für die Verwendung eines SSL -Zertifikats. Hier ist eine grundlegende Anleitung unter der Annahme, dass Sie einen Apacheweb -Server verwenden. 1. Installieren Sie zuerst die erforderliche Software, stellen Sie sicher, dass Ihr System auf dem neuesten Stand ist, und installieren Sie Apache und OpenSSL: sudoaptupdatesudoaptupgradesudoaptinsta

Welcher Dienst ist Apache Welcher Dienst ist Apache Apr 13, 2025 pm 12:06 PM

Apache ist der Held hinter dem Internet. Es ist nicht nur ein Webserver, sondern auch eine leistungsstarke Plattform, die enormen Datenverkehr unterstützt und dynamische Inhalte bietet. Es bietet eine extrem hohe Flexibilität durch ein modulares Design und ermöglicht die Ausdehnung verschiedener Funktionen nach Bedarf. Modularität stellt jedoch auch Konfigurations- und Leistungsherausforderungen vor, die ein sorgfältiges Management erfordern. Apache eignet sich für Serverszenarien, die hoch anpassbare und entsprechende komplexe Anforderungen erfordern.

In welcher Sprache wird Apache geschrieben? In welcher Sprache wird Apache geschrieben? Apr 13, 2025 pm 12:42 PM

Apache ist in C geschrieben. Die Sprache bietet Geschwindigkeit, Stabilität, Portabilität und direkten Zugriff auf Hardware, wodurch es für die Entwicklung von Webserver ideal ist.

PHP und Python: Code Beispiele und Vergleich PHP und Python: Code Beispiele und Vergleich Apr 15, 2025 am 12:07 AM

PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Wie man ein Pytorch -Modell auf CentOS trainiert Wie man ein Pytorch -Modell auf CentOS trainiert Apr 14, 2025 pm 03:03 PM

Effizientes Training von Pytorch -Modellen auf CentOS -Systemen erfordert Schritte, und dieser Artikel bietet detaillierte Anleitungen. 1.. Es wird empfohlen, YUM oder DNF zu verwenden, um Python 3 und Upgrade PIP zu installieren: Sudoyumupdatepython3 (oder sudodnfupdatepython3), PIP3Install-upgradepip. CUDA und CUDNN (GPU -Beschleunigung): Wenn Sie Nvidiagpu verwenden, müssen Sie Cudatool installieren

See all articles