Heim > Web-Frontend > js-Tutorial > JavaScript-Maschinenlernen basierend auf TensorFlow.js

JavaScript-Maschinenlernen basierend auf TensorFlow.js

little bottle
Freigeben: 2019-04-29 09:44:23
nach vorne
2800 Leute haben es durchsucht

In diesem Artikel geht es um maschinelles Lernen in JavaScript auf Basis von TensorFlow.js. Interessierte Freunde können sich darüber informieren.

JavaScript-Maschinenlernen basierend auf TensorFlow.js

Während die Programmiersprachen Python oder R eine relativ einfache Lernkurve haben, ziehen es Webentwickler vor, Dinge innerhalb ihrer Komfortzone von JavaScript zu tun. Derzeit hat node.js damit begonnen, JavaScript auf alle Bereiche anzuwenden. Im Rahmen dieses allgemeinen Trends müssen wir JS für maschinelles Lernen verstehen und verwenden. Python wurde aufgrund der Vielzahl verfügbarer Pakete populär, aber die JS-Community folgte diesem Beispiel. Dieser Artikel hilft Anfängern dabei, zu lernen, wie man einen einfachen Klassifikator erstellt.

Erstellen

Wir können eine Webseite erstellen, die tensorflow.js verwendet, um ein Modell im Browser zu trainieren. Unter Berücksichtigung der „durchschnittlichen Reihenanzahl“ eines Hauses kann das Modell lernen, den „Preis“ des Hauses vorherzusagen.

Was wir dafür tun müssen ist:

Laden Sie die Daten und bereiten Sie sie für das Training vor.

Definieren Sie die Architektur des Modells.

Trainieren Sie das Modell und überwachen Sie seine Leistung während des Trainings.

Bewerten Sie das trainierte Modell, indem Sie einige Vorhersagen treffen.

Schritt eins: Beginnen wir mit den Grundlagen

Erstellen Sie eine HTML-Seite und binden Sie JavaScript ein. Kopieren Sie den folgenden Code in eine HTML-Datei mit dem Namen index.html.

<!DOCTYPE html>
<html>
<head>
  <title>TensorFlow.js Tutorial</title>
  <!-- Import TensorFlow.js -->
  <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@1.0.0/dist/tf.min.js"></script>
  <!-- Import tfjs-vis -->
  <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-vis@1.0.2/dist/tfjs-vis.umd.min.js"></script>
  <!-- Import the main script file -->
  <script src="script.js"></script>
</head>
<body>
</body>
</html>
Nach dem Login kopieren

Erstellen Sie eine Javascript-Datei für den Code

Erstellen Sie im selben Ordner wie die HTML-Datei oben eine Datei mit dem Namen script.js und fügen Sie den folgenden Code hinzu In.

console.log(&#39;Hello TensorFlow&#39;);
Nach dem Login kopieren

Testen

Jetzt, da Sie die HTML- und JavaScript-Dateien erstellt haben, testen Sie sie. Öffnen Sie die Datei index.html in Ihrem Browser und öffnen Sie die Devtools-Konsole.

Wenn alles in Ordnung ist, sollten zwei globale Variablen erstellt und in der Devtools-Konsole verfügbar sein:

  • tf ist eine Referenz auf die tensorflow.js-Bibliothek
  • tfvis ist eine Referenz auf die tfjs vis-Bibliothek

Jetzt sollte eine Meldung mit der Aufschrift „Hallo TensorFlow“ angezeigt werden. Wenn ja, können Sie mit dem nächsten Schritt fortfahren.

JavaScript-Maschinenlernen basierend auf TensorFlow.js

Hinweis: Sie können Bit verwenden, um wiederverwendbaren JS-Code zu teilen

Bit (Bit auf GitHub) ist projektübergreifend und The schnellste und skalierbarste Möglichkeit für Anwendungen, wiederverwendbaren JavaScript-Code zu teilen. Probieren Sie es aus, es ist kostenlos:

Component Discovery and Collaboration·Bit

Bit ist ein Ort, an dem Entwickler Komponenten teilen und zusammenarbeiten können, um fantastische Software zu entwickeln. Entdecken Sie gemeinsam genutzte Komponenten...
Bit.dev

Beispiel: Ramda wird als gemeinsam genutzte Komponente verwendet

Ramda von Ramda·Bit

Eine nützliche Funktion für die Bibliothek von JavaScript-Programmierern . -256 Javascript-Komponenten. Zum Beispiel: Gleichheitszeichen, multiplizieren...
Bit.dev

Schritt 2: Laden Sie die Daten, formatieren Sie die Daten und visualisieren Sie die Eingabedaten

Wir lädt den „Haus“-Datensatz, finden Sie hier. Es umfasst viele verschiedene Merkmale eines bestimmten Hauses. Für dieses Tutorial benötigen wir lediglich Daten zur durchschnittlichen Zimmergröße und zum Preis pro Haus.

Fügen Sie den folgenden Code zur Datei script.js hinzu.

async function getData() {
  Const houseDataReq=await
fetch(&#39;https://raw.githubusercontent.com/meetnandu05/ml1/master/house.json&#39;);  
  const houseData = await houseDataReq.json();  
  const cleaned = houseData.map(house => ({
    price: house.Price,
    rooms: house.AvgAreaNumberofRooms,
  }))
  .filter(house => (house.price != null && house.rooms != null));

  return cleaned;
}
Nach dem Login kopieren

Dadurch werden alle Einträge entfernt, für die kein Preis oder keine Zimmeranzahl definiert ist. Wir können diese Daten in einem Streudiagramm darstellen, um zu sehen, wie sie aussehen.

Fügen Sie den folgenden Code am Ende der Datei script.js hinzu.

async function run() {
  // Load and plot the original input data that we are going to train on.
  const data = await getData();
  const values = data.map(d => ({
    x: d.rooms,
    y: d.price,
  }));
  tfvis.render.scatterplot(
    {name: &#39;No.of rooms v Price&#39;},
    {values}, 
    {
      xLabel: &#39;No. of rooms&#39;,
      yLabel: &#39;Price&#39;,
      height: 300
    }
  );
  // More code will be added below
}
document.addEventListener(&#39;DOMContentLoaded&#39;, run);
Nach dem Login kopieren

Wenn Sie die Seite aktualisieren, sehen Sie auf der linken Seite ein Feld mit einem Streudiagramm der Daten, wie unten dargestellt.

JavaScript-Maschinenlernen basierend auf TensorFlow.js

Im Allgemeinen ist es bei der Arbeit mit Daten am besten, Möglichkeiten zu finden, sie anzusehen und bei Bedarf zu bereinigen. Durch die Visualisierung der Daten können wir verstehen, ob das Modell irgendeine Struktur der Daten lernen kann.

Wie aus der obigen Abbildung ersichtlich ist, besteht ein positiver Zusammenhang zwischen der Anzahl der Zimmer und dem Preis, d. h. mit zunehmender Anzahl der Zimmer steigt im Allgemeinen der Preis für Häuser.

Schritt 3: Erstellen Sie das zu trainierende Modell

In diesem Schritt schreiben wir Code zum Erstellen des Modells für maschinelles Lernen. Die Struktur des Modells basiert hauptsächlich auf diesem Code, daher ist dies ein wichtiger Schritt. Modelle für maschinelles Lernen nehmen Eingaben auf und erzeugen Ausgaben. Für tensorflow.js müssen wir ein neuronales Netzwerk aufbauen.

Fügen Sie die folgende Funktion zur Datei script.js hinzu, um das Modell zu definieren.

function createModel() {
  // Create a sequential model
  const model = tf.sequential(); 

  // Add a single hidden layer
  model.add(tf.layers.dense({inputShape: [1], units: 1, useBias: true}));

  // Add an output layer
  model.add(tf.layers.dense({units: 1, useBias: true}));
  return model;
}
Nach dem Login kopieren

Dies ist eines der einfachsten Modelle, die wir in tensorflow.js definieren können. Versuchen wir, jede Zeile einfach aufzuschlüsseln.

Modell instanziieren

const model = tf.sequential();
Nach dem Login kopieren

Dadurch wird ein tf.model-Objekt instanziiert. Dieses Modell ist kontinuierlich, da seine Eingaben direkt zu seinen Ausgaben fließen. Andere Modelltypen können Verzweigungen und sogar mehrere Ein- und Ausgänge haben, aber in vielen Fällen ist Ihr Modell kontinuierlich.

Ebene hinzufügen

model.add(tf.layers.dense({inputShape: [1], units: 1, useBias: true}));
Nach dem Login kopieren

这为我们的网络添加了一个隐藏层。因为这是网络的第一层,所以我们需要定义我们的输入形状。输入形状是[1],因为我们有1这个数字作为输入(给定房间的房间数)。

单位(链接)设置权重矩阵在层中的大小。在这里将其设置为1,我们可以说每个数据输入特性都有一个权重。

model.add(tf.layers.dense({units: 1}));
Nach dem Login kopieren

上面的代码创建了我们的输出层。我们将单位设置为1,因为我们要输出1这个数字。

创建实例

将以下代码添加到前面定义的运行函数中。

// Create the model
const model = createModel();  
tfvis.show.modelSummary({name: &#39;Model Summary&#39;}, model);
Nach dem Login kopieren

这样可以创建实例模型,并且在网页上有显示层的摘要。

JavaScript-Maschinenlernen basierend auf TensorFlow.js

步骤4:为创建准备数据

为了获得TensorFlow.js的性能优势,使培训机器学习模型实用化,我们需要将数据转换为Tensors。

将以下代码添加到script.js文件中。

function convertToTensor(data) {

  return tf.tidy(() => {
    // Step 1\. Shuffle the data    
    tf.util.shuffle(data);
    // Step 2\. Convert data to Tensor
    const inputs = data.map(d => d.rooms)
    const labels = data.map(d => d.price);
    const inputTensor = tf.tensor2d(inputs, [inputs.length, 1]);
    const labelTensor = tf.tensor2d(labels, [labels.length, 1]);
    //Step 3\. Normalize the data to the range 0 - 1 using min-max scaling
    const inputMax = inputTensor.max();
    const inputMin = inputTensor.min();  
    const labelMax = labelTensor.max();
    const labelMin = labelTensor.min();
    const normalizedInputs = inputTensor.sub(inputMin).p(inputMax.sub(inputMin));
    const normalizedLabels = labelTensor.sub(labelMin).p(labelMax.sub(labelMin));
    return {
      inputs: normalizedInputs,
      labels: normalizedLabels,
      // Return the min/max bounds so we can use them later.
      inputMax,
      inputMin,
      labelMax,
      labelMin,
    }
  });  
}
Nach dem Login kopieren

接下来,我们可以分析一下将会出现什么情况。

随机播放数据

// Step 1\. Shuffle the data    
tf.util.shuffle(data);
Nach dem Login kopieren

在训练模型的过程中,数据集被分成更小的集合,每个集合称为一个批。然后将这些批次送入模型运行。整理数据很重要,因为模型不应该一次又一次地得到相同的数据。如果模型一次又一次地得到相同的数据,那么模型将无法归纳数据,并为运行期间收到的输入提供指定的输出。洗牌将有助于在每个批次中拥有各种数据。

转换为Tensor

// Step 2\. Convert data to Tensor
const inputs = data.map(d => d.rooms)
const labels = data.map(d => d.price);
const inputTensor = tf.tensor2d(inputs, [inputs.length, 1]);
const labelTensor = tf.tensor2d(labels, [labels.length, 1]);
Nach dem Login kopieren

这里我们制作了两个数组,一个用于输入示例(房间条目数),另一个用于实际输出值(在机器学习中称为标签,在我们的例子中是每个房子的价格)。然后我们将每个数组数据转换为一个二维张量。

规范化数据

//Step 3\. Normalize the data to the range 0 - 1 using min-max scaling
const inputMax = inputTensor.max();
const inputMin = inputTensor.min();  
const labelMax = labelTensor.max();
const labelMin = labelTensor.min();
const normalizedInputs = inputTensor.sub(inputMin).p(inputMax.sub(inputMin));
const normalizedLabels = labelTensor.sub(labelMin).p(labelMax.sub(labelMin));
Nach dem Login kopieren

接下来,我们规范化数据。在这里,我们使用最小-最大比例将数据规范化为数值范围0-1。规范化很重要,因为您将使用tensorflow.js构建的许多机器学习模型的内部设计都是为了使用不太大的数字。规范化数据以包括0到1或-1到1的公共范围。

返回数据和规范化界限

return {
  inputs: normalizedInputs,
  labels: normalizedLabels,
  // Return the min/max bounds so we can use them later.
  inputMax,
  inputMin,
  labelMax,
  labelMin,
}
Nach dem Login kopieren

我们可以在运行期间保留用于标准化的值,这样我们就可以取消标准化输出,使其恢复到原始规模,我们就可以用同样的方式规范化未来的输入数据。

步骤5:运行模型

通过创建模型实例、将数据表示为张量,我们可以准备开始运行模型。

将以下函数复制到script.js文件中。

async function trainModel(model, inputs, labels) {
  // Prepare the model for training.  
  model.compile({
    optimizer: tf.train.adam(),
    loss: tf.losses.meanSquaredError,
    metrics: [&#39;mse&#39;],
  });

  const batchSize = 28;
  const epochs = 50;

  return await model.fit(inputs, labels, {
    batchSize,
    epochs,
    shuffle: true,
    callbacks: tfvis.show.fitCallbacks(
      { name: &#39;Training Performance&#39; },
      [&#39;loss&#39;, &#39;mse&#39;], 
      { height: 200, callbacks: [&#39;onEpochEnd&#39;] }
    )
  });
}
Nach dem Login kopieren

我们把它分解一下。

准备运行

// Prepare the model for training.  
model.compile({
  optimizer: tf.train.adam(),
  loss: tf.losses.meanSquaredError,
  metrics: [&#39;mse&#39;],
});
Nach dem Login kopieren

我们必须在训练前“编译”模型。要做到这一点,我们必须明确一些非常重要的事情:

优化器:这是一个算法,它可以控制模型的更新,就像上面看到的例子一样。TensorFlow.js中有许多可用的优化器。这里我们选择了Adam优化器,因为它在实践中非常有效,不需要进行额外配置。

损失函数:这是一个函数,它用于检测模型所显示的每个批(数据子集)方面完成的情况如何。在这里,我们可以使用meansquaredrror将模型所做的预测与真实值进行比较。

度量:这是我们要在每个区块结束时用来计算的度量数组。我们可以用它计算整个训练集的准确度,这样我们就可以检查自己的运行结果了。这里我们使用mse,它是meansquaredrror的简写。这是我们用于损失函数的相同函数,也是回归任务中常用的函数。

const batchSize = 28;
const epochs = 50;
Nach dem Login kopieren

接下来,我们选择一个批量大小和一些时间段:

batchSize指的是模型在每次运行迭代时将看到的数据子集的大小。常见的批量大小通常在32-512之间。对于所有问题来说,并没有一个真正理想的批量大小,描述各种批量大小的精确方式这一知识点本教程没有相关讲解,对这些有兴趣可以通过别的渠道进行了解学习。

epochs指的是模型将查看你提供的整个数据集的次数。在这里,我们通过数据集进行50次迭代。

启动列车环路

return model.fit(inputs, labels, {
  batchSize,
  epochs,
  callbacks: tfvis.show.fitCallbacks(
    { name: &#39;Training Performance&#39; },
    [&#39;loss&#39;, &#39;mse&#39;], 
    { 
      height: 200, 
      callbacks: [&#39;onEpochEnd&#39;]
    }
  )
});
Nach dem Login kopieren

model.fit是我们调用的启动循环的函数。它是一个异步函数,因此我们返回它给我们的特定值,以便调用者可以确定运行结束时间。

为了监控运行进度,我们将一些回调传递给model.fit。我们使用tfvis.show.fitcallbacks生成函数,这些函数可以为前面指定的“损失”和“毫秒”度量绘制图表。

把它们放在一起

现在我们必须调用从运行函数定义的函数。

将以下代码添加到运行函数的底部。

// Convert the data to a form we can use for training.
const tensorData = convertToTensor(data);
const {inputs, labels} = tensorData;

// Train the model  
await trainModel(model, inputs, labels);
console.log(&#39;Done Training&#39;);
Nach dem Login kopieren

刷新页面时,几秒钟后,你应该会看到图形正在更新。

这些是由我们之前创建的回调创建的。它们在每个时代结束时显示丢失(在最近的批处理上)和毫秒(在整个数据集上)。

当训练一个模型时,我们希望看到损失减少。在这种情况下,因为我们的度量是一个误差度量,所以我们希望看到它也下降。

第6步:做出预测

既然我们的模型经过了训练,我们想做一些预测。让我们通过观察它预测的低到高数量房间的统一范围来评估模型。

将以下函数添加到script.js文件中

function testModel(model, inputData, normalizationData) {
  const {inputMax, inputMin, labelMin, labelMax} = normalizationData;  

  // Generate predictions for a uniform range of numbers between 0 and 1;
  // We un-normalize the data by doing the inverse of the min-max scaling 
  // that we did earlier.
  const [xs, preds] = tf.tidy(() => {

    const xs = tf.linspace(0, 1, 100);      
    const preds = model.predict(xs.reshape([100, 1]));      

    const unNormXs = xs
      .mul(inputMax.sub(inputMin))
      .add(inputMin);

    const unNormPreds = preds
      .mul(labelMax.sub(labelMin))
      .add(labelMin);

    // Un-normalize the data
    return [unNormXs.dataSync(), unNormPreds.dataSync()];
  });

  const predictedPoints = Array.from(xs).map((val, i) => {
    return {x: val, y: preds[i]}
  });

  const originalPoints = inputData.map(d => ({
    x: d.rooms, y: d.price,
  }));

  tfvis.render.scatterplot(
    {name: &#39;Model Predictions vs Original Data&#39;}, 
    {values: [originalPoints, predictedPoints], series: [&#39;original&#39;, &#39;predicted&#39;]}, 
    {
      xLabel: &#39;No. of rooms&#39;,
      yLabel: &#39;Price&#39;,
      height: 300
    }
  );
}
Nach dem Login kopieren

在上面的函数中需要注意的一些事情。

const xs = tf.linspace(0, 1, 100);      
const preds = model.predict(xs.reshape([100, 1]));
Nach dem Login kopieren

我们生成100个新的“示例”以提供给模型。model.predict是我们如何将这些示例输入到模型中的。注意,他们需要有一个类似的形状([num_的例子,num_的特点每个_的例子])当我们做培训时。

// Un-normalize the data
const unNormXs = xs
  .mul(inputMax.sub(inputMin))
  .add(inputMin);

const unNormPreds = preds
  .mul(labelMax.sub(labelMin))
  .add(labelMin);
Nach dem Login kopieren

为了将数据恢复到原始范围(而不是0–1),我们使用规范化时计算的值,但只需反转操作。

return [unNormXs.dataSync(), unNormPreds.dataSync()];
Nach dem Login kopieren

.datasync()是一种方法,我们可以使用它来获取存储在张量中的值的typedarray。这允许我们在常规的javascript中处理这些值。这是通常首选的.data()方法的同步版本。

最后,我们使用tfjs-vis来绘制原始数据和模型中的预测。

将以下代码添加到运行函数中。

testModel(model, data, tensorData);
Nach dem Login kopieren

刷新页面,现在已经完成啦!

现在你已经学会使用tensorflow.js创建一个简单的机器学习模型了。

相关教程:JavaScript视频教程

Das obige ist der detaillierte Inhalt vonJavaScript-Maschinenlernen basierend auf TensorFlow.js. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Verwandte Etiketten:
Quelle:segmentfault.com
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Neueste Artikel des Autors
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage