Heim häufiges Problem Welche Programmiersprache sollte ich für Big Data lernen?

Welche Programmiersprache sollte ich für Big Data lernen?

May 07, 2019 am 09:31 AM
大数据

Die im Big-Data-Zeitalter gelösten Probleme sind hauptsächlich große Datensätze, daher ist die gewählte Programmiersprache dieselbe, die mit großen Datensätzen umgehen und Probleme gut lösen kann. Hier sind einige empfohlene Mainstream-Sprachen.

Welche Programmiersprache sollte ich für Big Data lernen?

Zuerst wird hauptsächlich Java verwendet. Warum? Dies liegt daran, dass zu viele Leute Java spielen und sich Big Data zuwenden. Daher entscheiden sich viele Unternehmen für die Java-Sprachentwicklung zur Wartung und zum Einsatz von Talenten, andere wiederum, weil die Plattform über alte MapReduce-Programme verfügt werden mit Spark-Aufgaben gemischt und Java wird als einheitliche Entwicklungssprache der Plattform ausgewählt. Einige Unternehmen wählen auch die vielseitigere Java-Sprache für die Entwicklung, um eine Verbindung zu externen Projekten herzustellen.

Scala kann auch als die Hauptsprache für die Big-Data-Spark-Entwicklung bezeichnet werden, denn nachdem Sie Spark gelernt haben, werden Sie auf jeden Fall weitere Forschungen und Studien zu Scala durchführen, denn um die Spark-Technologie gut zu erlernen, benötigen Sie Um den Quellcode zu studieren, müssen Projekte prägnanter und schneller entwickelt werden. Daher ist Scala, die Spark-Big-Data-Entwicklungssprache, die beliebteste.

Python ist mit dem Aufkommen von maschinellem Lernen und KI auch eine von vielen Menschen bevorzugte Sprache; es gibt auch eine Welle von Leuten, die es mögen, das heißt Big-Data-Analysten, die Python für die Skriptplanung verwenden in SQL und Spark SQL.

R ist eine Sprache und Betriebsumgebung für statistische Analysen und Grafiken. R ist eine kostenlose, kostenlose Open-Source-Software, die zum GNU-System gehört. Es ist ein hervorragendes Werkzeug für statistische Berechnungen und statistische Grafiken.

Das obige ist der detaillierte Inhalt vonWelche Programmiersprache sollte ich für Big Data lernen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

PHPs Fähigkeiten zur Verarbeitung von Big-Data-Strukturen PHPs Fähigkeiten zur Verarbeitung von Big-Data-Strukturen May 08, 2024 am 10:24 AM

Fähigkeiten zur Verarbeitung von Big-Data-Strukturen: Chunking: Teilen Sie den Datensatz auf und verarbeiten Sie ihn in Blöcken, um den Speicherverbrauch zu reduzieren. Generator: Generieren Sie Datenelemente einzeln, ohne den gesamten Datensatz zu laden, geeignet für unbegrenzte Datensätze. Streaming: Lesen Sie Dateien oder fragen Sie Ergebnisse Zeile für Zeile ab, geeignet für große Dateien oder Remote-Daten. Externer Speicher: Speichern Sie die Daten bei sehr großen Datensätzen in einer Datenbank oder NoSQL.

Fünf große Entwicklungstrends in der AEC/O-Branche im Jahr 2024 Fünf große Entwicklungstrends in der AEC/O-Branche im Jahr 2024 Apr 19, 2024 pm 02:50 PM

AEC/O (Architecture, Engineering & Construction/Operation) bezieht sich auf die umfassenden Dienstleistungen, die Architekturdesign, Ingenieurdesign, Bau und Betrieb in der Bauindustrie anbieten. Im Jahr 2024 steht die AEC/O-Branche angesichts des technologischen Fortschritts vor sich ändernden Herausforderungen. In diesem Jahr wird voraussichtlich die Integration fortschrittlicher Technologien stattfinden, was einen Paradigmenwechsel in Design, Bau und Betrieb einläuten wird. Als Reaktion auf diese Veränderungen definieren Branchen Arbeitsprozesse neu, passen Prioritäten an und verbessern die Zusammenarbeit, um sich an die Bedürfnisse einer sich schnell verändernden Welt anzupassen. Die folgenden fünf großen Trends in der AEC/O-Branche werden im Jahr 2024 zu Schlüsselthemen und empfehlen den Weg in eine stärker integrierte, reaktionsfähigere und nachhaltigere Zukunft: integrierte Lieferkette, intelligente Fertigung

Erfahrungsaustausch in der C++-Entwicklung: praktische Erfahrung in der C++-Big-Data-Programmierung Erfahrungsaustausch in der C++-Entwicklung: praktische Erfahrung in der C++-Big-Data-Programmierung Nov 22, 2023 am 09:14 AM

Im Internetzeitalter ist Big Data zu einer neuen Ressource geworden. Mit der kontinuierlichen Verbesserung der Big-Data-Analysetechnologie ist die Nachfrage nach Big-Data-Programmierung immer dringlicher geworden. Als weit verbreitete Programmiersprache sind die einzigartigen Vorteile von C++ bei der Big-Data-Programmierung immer deutlicher hervorgetreten. Im Folgenden werde ich meine praktischen Erfahrungen in der C++-Big-Data-Programmierung teilen. 1. Auswahl der geeigneten Datenstruktur Die Auswahl der geeigneten Datenstruktur ist ein wichtiger Bestandteil beim Schreiben effizienter Big-Data-Programme. In C++ gibt es eine Vielzahl von Datenstrukturen, die wir verwenden können, z. B. Arrays, verknüpfte Listen, Bäume, Hash-Tabellen usw.

Anwendung von Algorithmen beim Aufbau einer 58-Porträt-Plattform Anwendung von Algorithmen beim Aufbau einer 58-Porträt-Plattform May 09, 2024 am 09:01 AM

1. Hintergrund des Baus der 58-Portrait-Plattform Zunächst möchte ich Ihnen den Hintergrund des Baus der 58-Portrait-Plattform mitteilen. 1. Das traditionelle Denken der traditionellen Profiling-Plattform reicht nicht mehr aus. Der Aufbau einer Benutzer-Profiling-Plattform basiert auf Data-Warehouse-Modellierungsfunktionen, um Daten aus mehreren Geschäftsbereichen zu integrieren, um genaue Benutzerporträts zu erstellen Und schließlich muss es über Datenplattformfunktionen verfügen, um Benutzerprofildaten effizient zu speichern, abzufragen und zu teilen sowie Profildienste bereitzustellen. Der Hauptunterschied zwischen einer selbst erstellten Business-Profiling-Plattform und einer Middle-Office-Profiling-Plattform besteht darin, dass die selbst erstellte Profiling-Plattform einen einzelnen Geschäftsbereich bedient und bei Bedarf angepasst werden kann. Die Mid-Office-Plattform bedient mehrere Geschäftsbereiche und ist komplex Modellierung und bietet allgemeinere Funktionen. 2.58 Benutzerporträts vom Hintergrund der Porträtkonstruktion im Mittelbahnsteig 58

Diskussion über die Gründe und Lösungen für das Fehlen eines Big-Data-Frameworks in der Go-Sprache Diskussion über die Gründe und Lösungen für das Fehlen eines Big-Data-Frameworks in der Go-Sprache Mar 29, 2024 pm 12:24 PM

Im heutigen Big-Data-Zeitalter sind Datenverarbeitung und -analyse zu einer wichtigen Unterstützung für die Entwicklung verschiedener Branchen geworden. Als Programmiersprache mit hoher Entwicklungseffizienz und überlegener Leistung hat die Go-Sprache im Bereich Big Data nach und nach Aufmerksamkeit erregt. Im Vergleich zu anderen Sprachen wie Java, Python usw. verfügt die Go-Sprache jedoch über eine relativ unzureichende Unterstützung für Big-Data-Frameworks, was einigen Entwicklern Probleme bereitet hat. In diesem Artikel werden die Hauptgründe für das Fehlen eines Big-Data-Frameworks in der Go-Sprache untersucht, entsprechende Lösungen vorgeschlagen und anhand spezifischer Codebeispiele veranschaulicht. 1. Gehen Sie zur Sprache

KI, digitale Zwillinge, Visualisierung ... Höhepunkte der Yizhiwei-Herbst-Produkteinführungskonferenz 2023! KI, digitale Zwillinge, Visualisierung ... Höhepunkte der Yizhiwei-Herbst-Produkteinführungskonferenz 2023! Nov 14, 2023 pm 05:29 PM

Die Produkteinführung im Herbst 2023 von Yizhiwei ist erfolgreich abgeschlossen! Lassen Sie uns gemeinsam die Highlights der Konferenz Revue passieren lassen! 1. Intelligente, integrative Offenheit, die es digitalen Zwillingen ermöglicht, produktiv zu werden. Ning Haiyuan, Mitbegründer von Kangaroo Cloud und CEO von Yizhiwei, sagte in seiner Eröffnungsrede: Beim diesjährigen strategischen Treffen des Unternehmens haben wir die Hauptrichtung der Produktforschung und -entwicklung als festgelegt „Intelligente inklusive Offenheit“ „Drei Kernfähigkeiten“, wobei wir uns auf die drei Kernschlüsselwörter „intelligente inklusive Offenheit“ konzentrieren, schlagen wir außerdem das Entwicklungsziel vor, „digitale Zwillinge zu einer Produktivkraft zu machen“. 2. EasyTwin: Entdecken Sie eine neue Digital-Twin-Engine, die einfacher zu verwenden ist 1. Erkunden Sie von 0.1 bis 1.0 weiterhin die Digital-Twin-Fusion-Rendering-Engine, um bessere Lösungen mit ausgereiftem 3D-Bearbeitungsmodus, praktischen interaktiven Blaupausen und umfangreichen Modellressourcen zu erhalten

Erste Schritte: Verwendung der Go-Sprache zur Verarbeitung großer Datenmengen Erste Schritte: Verwendung der Go-Sprache zur Verarbeitung großer Datenmengen Feb 25, 2024 pm 09:51 PM

Als Open-Source-Programmiersprache hat die Go-Sprache in den letzten Jahren nach und nach große Aufmerksamkeit und Verwendung gefunden. Es wird von Programmierern wegen seiner Einfachheit, Effizienz und leistungsstarken Funktionen zur gleichzeitigen Verarbeitung bevorzugt. Auch im Bereich der Big-Data-Verarbeitung verfügt die Go-Sprache über großes Potenzial. Sie kann zur Verarbeitung großer Datenmengen, zur Leistungsoptimierung und zur guten Integration in verschiedene Big-Data-Verarbeitungstools und Frameworks eingesetzt werden. In diesem Artikel stellen wir einige grundlegende Konzepte und Techniken der Big-Data-Verarbeitung in der Go-Sprache vor und zeigen anhand spezifischer Codebeispiele, wie die Go-Sprache verwendet wird.

Big-Data-Verarbeitung in C++-Technologie: Wie nutzt man In-Memory-Datenbanken, um die Big-Data-Leistung zu optimieren? Big-Data-Verarbeitung in C++-Technologie: Wie nutzt man In-Memory-Datenbanken, um die Big-Data-Leistung zu optimieren? May 31, 2024 pm 07:34 PM

Bei der Verarbeitung großer Datenmengen kann die Verwendung einer In-Memory-Datenbank (z. B. Aerospike) die Leistung von C++-Anwendungen verbessern, da sie Daten im Computerspeicher speichert, wodurch Festplatten-E/A-Engpässe vermieden und die Datenzugriffsgeschwindigkeiten erheblich erhöht werden. Praxisbeispiele zeigen, dass die Abfragegeschwindigkeit bei Verwendung einer In-Memory-Datenbank um mehrere Größenordnungen schneller ist als bei Verwendung einer Festplattendatenbank.