Was ist Python-Fackel?
Python Torch, auch bekannt als PyTorach, ist ein Python-First-Deep-Learning-Framework und eine Open-Source-Python-Bibliothek für maschinelles Lernen für Anwendungen wie die Verarbeitung natürlicher Sprache. Es ermöglicht nicht nur eine leistungsstarke GPU-Beschleunigung, sondern unterstützt auch Dynamic Neuronale Netze werden von vielen Mainstream-Frameworks wie Tensorflow nicht unterstützt.
PyTorch wird vom Torch7-Team entwickelt. Wie der Name schon sagt, besteht der Unterschied zu Torch darin, dass PyTorch Python als Entwicklungssprache verwendet.
Das sogenannte „Python First“ bedeutet auch, dass es sich um ein Python-First-Deep-Learning-Framework handelt, das nicht nur eine leistungsstarke GPU-Beschleunigung erreicht, sondern auch dynamische neuronale Netze unterstützt, was viele Mainstream-Frameworks wie Tensorflow tun Habe es jetzt nicht unterstützt.
PyTorch kann sowohl als Numpy mit GPU-Unterstützung als auch als leistungsstarkes tiefes neuronales Netzwerk mit automatischer Ableitungsfunktion angesehen werden. Neben Facebook wurde es auch von anderen Institutionen übernommen.
Empfohlenes Handbuch: Grundlegendes Tutorial zur Einführung in Python
Warum PyTorch verwenden
Warum sollten wir uns angesichts so vieler Deep-Learning-Frameworks für PyTorch entscheiden? Ist Tensorflow nicht der Standardführer für Deep-Learning-Frameworks? Warum nicht direkt Tensorflow, sondern PyTorch wählen? Im Folgenden finden Sie eine Einführung in vier Aspekte, warum Sie PyTorch verwenden sollten.
(1) Die Beherrschung eines Frameworks kann nicht ein für alle Mal erledigt werden. Niemand hat ein absolutes Monopol im Deep Learning, nicht einmal Google, daher reicht es nicht aus, nur Tensorflow zu lernen. Gleichzeitig verwenden aktuelle Forscher verschiedene Frameworks. Wenn Sie den von ihnen implementierten Code sehen möchten, müssen Sie zumindest das von ihnen verwendete Framework verstehen. Lernen Sie also ein weiteres Framework kennen, falls Sie es benötigen.
(2) Tensorflow und Caffe sind beide zwingende Programmiersprachen und sie müssen zuerst ein neuronales Netzwerk aufbauen und dann immer wieder dieselbe Struktur verwenden Netzwerk, muss einfach von vorne beginnen. Aber für PyTorch können Sie durch eine umgekehrte automatische Ableitungstechnologie das Verhalten des neuronalen Netzwerks beliebig und ohne Verzögerung ändern. Obwohl diese Technologie nicht nur für PyTorch gilt, ist sie bisher die schnellste Implementierung und kann Ihnen bei der Implementierung aller Verrückten helfen idea erreicht die höchste Geschwindigkeit und die beste Flexibilität, was auch der größte Vorteil von PyTorch gegenüber Tensorflow ist.
(3) Die Designidee von PyTorch ist linear, intuitiv und einfach zu verwenden. Wenn Sie eine Codezeile ausführen, wird sie originalgetreu ausgeführt und es gibt keine asynchrone Weltansicht in Ihrem Code angezeigt wird, können Sie diese Informationen verwenden, um den fehlerhaften Code einfach und schnell zu finden, und Sie verschwenden beim Debuggen nicht zu viel Zeit aufgrund falscher Richtungen oder asynchroner und undurchsichtiger Engines.
(4) Im Vergleich zu Tensorflow ist der Code von PyTorch prägnanter und intuitiver. Gleichzeitig ist der Quellcode von PyTorch viel benutzerfreundlicher und einfacher für den stark industrialisierten und schwer verständlichen zugrunde liegenden Code. Verstehen. Es macht auf jeden Fall eine Freude, tief in die API einzutauchen und die zugrunde liegenden Schichten von PyTorch zu verstehen. Ein Framework, dessen zugrunde liegende Architektur verständlich ist, wird Ihnen ein tieferes Verständnis davon vermitteln.
Empfohlene verwandte Artikel:
1.Detaillierte Erläuterung des PyTorch-Batch-Trainings und Optimierervergleichs
2.Pytorch + Visdom behandelt einfache Klassifizierungsprobleme
3.Ein Beispiel für den Aufbau eines einfachen neuronalen Netzwerks auf PyTorch zur Implementierung von Regression und Klassifizierung
Verwandte Videoempfehlungen :
1.Little Turtles nullbasiertes Python-Einsteiger-Video-Tutorial
Abschließend fassen wir kurz die Funktionen von PyTorch zusammen:
GPU unterstützt;Dynamisches neuronales Netzwerk;
Imperative Erfahrung;
Bei so vielen Vorteilen hat PyTorch auch seine Nachteile. Da dieses Framework relativ neu ist, gibt es weniger Leute, die es verwenden, was seine Community nicht so stark macht, aber PyTorch bietet ein offizielles Forum, in dem Sie es tun können Suchen Sie nach den meisten Fragen, auf die Sie stoßen. Die Antworten werden in der Regel vom Autor oder anderen PyTorch-Benutzern bereitgestellt. Sie können ein Problem auch auf Github einreichen sehr schnell, was bis zu einem gewissen Grad als Lösung des Community-Problems angesehen werden kann.
Das obige ist der detaillierte Inhalt vonWas ist Python-Fackel?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



MySQL hat eine kostenlose Community -Version und eine kostenpflichtige Enterprise -Version. Die Community -Version kann kostenlos verwendet und geändert werden, die Unterstützung ist jedoch begrenzt und für Anwendungen mit geringen Stabilitätsanforderungen und starken technischen Funktionen geeignet. Die Enterprise Edition bietet umfassende kommerzielle Unterstützung für Anwendungen, die eine stabile, zuverlässige Hochleistungsdatenbank erfordern und bereit sind, Unterstützung zu bezahlen. Zu den Faktoren, die bei der Auswahl einer Version berücksichtigt werden, gehören Kritikalität, Budgetierung und technische Fähigkeiten von Anwendungen. Es gibt keine perfekte Option, nur die am besten geeignete Option, und Sie müssen die spezifische Situation sorgfältig auswählen.

Hadidb: Eine leichte, hochrangige skalierbare Python-Datenbank Hadidb (HadIDB) ist eine leichte Datenbank in Python mit einem hohen Maß an Skalierbarkeit. Installieren Sie HadIDB mithilfe der PIP -Installation: PipinstallHadIDB -Benutzerverwaltung erstellen Benutzer: createUser (), um einen neuen Benutzer zu erstellen. Die Authentication () -Methode authentifiziert die Identität des Benutzers. fromHadidb.operationImportUseruser_obj = user ("admin", "admin") user_obj.

Es ist unmöglich, das MongoDB -Passwort direkt über Navicat anzuzeigen, da es als Hash -Werte gespeichert ist. So rufen Sie verlorene Passwörter ab: 1. Passwörter zurücksetzen; 2. Überprüfen Sie die Konfigurationsdateien (können Hash -Werte enthalten). 3. Überprüfen Sie Codes (May Hardcode -Passwörter).

MySQL kann ohne Netzwerkverbindungen für die grundlegende Datenspeicherung und -verwaltung ausgeführt werden. Für die Interaktion mit anderen Systemen, Remotezugriff oder Verwendung erweiterte Funktionen wie Replikation und Clustering ist jedoch eine Netzwerkverbindung erforderlich. Darüber hinaus sind Sicherheitsmaßnahmen (wie Firewalls), Leistungsoptimierung (Wählen Sie die richtige Netzwerkverbindung) und die Datensicherung für die Verbindung zum Internet von entscheidender Bedeutung.

MySQL Workbench kann eine Verbindung zu MariADB herstellen, vorausgesetzt, die Konfiguration ist korrekt. Wählen Sie zuerst "Mariadb" als Anschlusstyp. Stellen Sie in der Verbindungskonfiguration Host, Port, Benutzer, Kennwort und Datenbank korrekt ein. Überprüfen Sie beim Testen der Verbindung, ob der Mariadb -Dienst gestartet wird, ob der Benutzername und das Passwort korrekt sind, ob die Portnummer korrekt ist, ob die Firewall Verbindungen zulässt und ob die Datenbank vorhanden ist. Verwenden Sie in fortschrittlicher Verwendung die Verbindungspooling -Technologie, um die Leistung zu optimieren. Zu den häufigen Fehlern gehören unzureichende Berechtigungen, Probleme mit Netzwerkverbindung usw. Bei Debugging -Fehlern, sorgfältige Analyse von Fehlerinformationen und verwenden Sie Debugging -Tools. Optimierung der Netzwerkkonfiguration kann die Leistung verbessern

Die MySQL-Datenbankleistung Optimierungshandbuch In ressourcenintensiven Anwendungen spielt die MySQL-Datenbank eine entscheidende Rolle und ist für die Verwaltung massiver Transaktionen verantwortlich. Mit der Erweiterung der Anwendung werden jedoch die Datenbankleistung Engpässe häufig zu einer Einschränkung. In diesem Artikel werden eine Reihe effektiver Strategien zur Leistungsoptimierung von MySQL -Leistung untersucht, um sicherzustellen, dass Ihre Anwendung unter hohen Lasten effizient und reaktionsschnell bleibt. Wir werden tatsächliche Fälle kombinieren, um eingehende Schlüsseltechnologien wie Indexierung, Abfrageoptimierung, Datenbankdesign und Caching zu erklären. 1. Das Design der Datenbankarchitektur und die optimierte Datenbankarchitektur sind der Eckpfeiler der MySQL -Leistungsoptimierung. Hier sind einige Kernprinzipien: Die Auswahl des richtigen Datentyps und die Auswahl des kleinsten Datentyps, der den Anforderungen entspricht, kann nicht nur Speicherplatz speichern, sondern auch die Datenverarbeitungsgeschwindigkeit verbessern.

Die MySQL -Verbindung kann auf die folgenden Gründe liegen: MySQL -Dienst wird nicht gestartet, die Firewall fängt die Verbindung ab, die Portnummer ist falsch, der Benutzername oder das Kennwort ist falsch, die Höradresse in my.cnf ist nicht ordnungsgemäß konfiguriert usw. Die Schritte zur Fehlerbehebung umfassen: 1. Überprüfen Sie, ob der MySQL -Dienst ausgeführt wird. 2. Passen Sie die Firewall -Einstellungen an, damit MySQL Port 3306 anhören kann. 3. Bestätigen Sie, dass die Portnummer mit der tatsächlichen Portnummer übereinstimmt. 4. Überprüfen Sie, ob der Benutzername und das Passwort korrekt sind. 5. Stellen Sie sicher, dass die Einstellungen für die Bindungsadresse in my.cnf korrekt sind.

Als Datenprofi müssen Sie große Datenmengen aus verschiedenen Quellen verarbeiten. Dies kann Herausforderungen für das Datenmanagement und die Analyse darstellen. Glücklicherweise können zwei AWS -Dienste helfen: AWS -Kleber und Amazon Athena.
