So verwenden Sie das Python-JSON-Modul
JSON(JavaScript Object Notation, JS 对象标记) 是一种轻量级的数据交换格式。JSON的数据格式其实就是python里面的字典格式,里面可以包含方括号括起来的数组,也就是python里面的列表。
在python中,有专门处理json格式的模块—— json 和 picle模块
Json 模块提供了四个方法: dumps、dump、loads、load
pickle 模块也提供了四个功能:dumps、dump、loads、load
一. dumps 和 dump:
dumps和dump 序列化方法
dumps只完成了序列化为str,
dump必须传文件描述符,将序列化的str保存到文件中
查看源码:
def dumps(obj, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, default=None, sort_keys=False, **kw): # Serialize ``obj`` to a JSON formatted ``str``. # 序列号 “obj” 数据类型 转换为 JSON格式的字符串 def dump(obj, fp, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, default=None, sort_keys=False, **kw): """Serialize ``obj`` as a JSON formatted stream to ``fp`` (a ``.write()``-supporting file-like object).
示例代码:
>>> import json >>> json.dumps([]) # dumps可以格式化所有的基本数据类型为字符串 '[]' >>> json.dumps(1) # 数字 '1' >>> json.dumps('1') # 字符串 '"1"' >>> dict = {"name":"Tom", "age":23} >>> json.dumps(dict) # 字典 '{"name": "Tom", "age": 23}'
a = {"name":"Tom", "age":23} with open("test.json", "w", encoding='utf-8') as f: # indent 超级好用,格式化保存字典,默认为None,小于0为零个空格 f.write(json.dumps(a, indent=4)) # json.dump(a,f,indent=4) # 和上面的效果一样
二. loads 和 load
loads和load 反序列化方法
loads 只完成了反序列化,
load 只接收文件描述符,完成了读取文件和反序列化
查看源码:
def loads(s, encoding=None, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, **kw): """Deserialize ``s`` (a ``str`` instance containing a JSON document) to a Python object. 将包含str类型的JSON文档反序列化为一个python对象""" def load(fp, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, **kw): """Deserialize ``fp`` (a ``.read()``-supporting file-like object containing a JSON document) to a Python object. 将一个包含JSON格式数据的可读文件饭序列化为一个python对象"""
实例:
>>> json.loads('{"name":"Tom", "age":23}') {'age': 23, 'name': 'Tom'}
import json with open("test.json", "r", encoding='utf-8') as f: aa = json.loads(f.read()) f.seek(0) bb = json.load(f) # 与 json.loads(f.read())print(aa)print(bb)# 输出:{'name': 'Tom', 'age': 23} {'name': 'Tom', 'age': 23}
Das obige ist der detaillierte Inhalt vonSo verwenden Sie das Python-JSON-Modul. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Die Gson@Expose-Annotation kann verwendet werden, um zu markieren, ob ein Feld für die Serialisierung oder Deserialisierung verfügbar (enthalten oder nicht) ist. Die @Expose-Annotation kann zwei Parameter annehmen. Jeder Parameter ist ein boolescher Wert und kann den Wert true oder false annehmen. Damit GSON auf die @Expose-Annotation reagieren kann, müssen wir mit der GsonBuilder-Klasse eine Gson-Instanz erstellen und die Methode „excludeFieldsWithoutExposeAnnotation()“ aufrufen, die Gson so konfiguriert, dass alle Felder ohne Expose-Annotation von der Serialisierung oder Deserialisierung ausgeschlossen werden. Syntax publicGsonBuilderexclud

Die Kombination von golangWebSocket und JSON: Datenübertragung und Parsing realisieren In der modernen Webentwicklung wird die Datenübertragung in Echtzeit immer wichtiger. WebSocket ist ein Protokoll, das zur bidirektionalen Kommunikation verwendet wird. Im Gegensatz zum herkömmlichen HTTP-Anfrage-Antwort-Modell ermöglicht WebSocket dem Server, Daten aktiv an den Client zu übertragen. JSON (JavaScriptObjectNotation) ist ein leichtes Format für den Datenaustausch, das prägnant und leicht lesbar ist.

MySQL5.7 und MySQL8.0 sind zwei verschiedene MySQL-Datenbankversionen. Es gibt einige Hauptunterschiede zwischen ihnen: Leistungsverbesserungen: MySQL8.0 weist im Vergleich zu MySQL5.7 einige Leistungsverbesserungen auf. Dazu gehören bessere Abfrageoptimierer, eine effizientere Erstellung von Abfrageausführungsplänen, bessere Indizierungsalgorithmen und parallele Abfragen usw. Diese Verbesserungen können die Abfrageleistung und die Gesamtsystemleistung verbessern. JSON-Unterstützung: MySQL 8.0 führt native Unterstützung für den JSON-Datentyp ein, einschließlich Speicherung, Abfrage und Indizierung von JSON-Daten. Dies macht die Verarbeitung und Bearbeitung von JSON-Daten in MySQL bequemer und effizienter. Transaktionsfunktionen: MySQL8.0 führt einige neue Transaktionsfunktionen ein, z. B. atomic

Zu den Leistungsoptimierungsmethoden für die Konvertierung von PHP-Arrays in JSON gehören: Verwendung von JSON-Erweiterungen und der Funktion json_encode(); Verwendung von Puffern zur Verbesserung der Leistung der Schleifencodierung; JSON-Codierungsbibliothek.

Verwenden Sie die Funktion json.MarshalIndent in Golang, um die Struktur in einen formatierten JSON-String zu konvertieren. Bei diesem Prozess kann uns die Funktion json.MarshalIndent helfen formatierte Ausgabe. Im Folgenden erläutern wir detailliert die Verwendung dieser Funktion und stellen konkrete Codebeispiele bereit. Erstellen wir zunächst eine Struktur mit einigen Daten. Das Folgende ist ein Hinweis

Schnellstart: Pandas-Methode zum Lesen von JSON-Dateien, spezifische Codebeispiele sind erforderlich. Einführung: Im Bereich Datenanalyse und Datenwissenschaft ist Pandas eine der wichtigsten Python-Bibliotheken. Es bietet umfangreiche Funktionen und flexible Datenstrukturen und kann verschiedene Daten problemlos verarbeiten und analysieren. In praktischen Anwendungen stoßen wir häufig auf Situationen, in denen wir JSON-Dateien lesen müssen. In diesem Artikel wird erläutert, wie Sie mit Pandas JSON-Dateien lesen und spezifische Codebeispiele anhängen. 1. Installation von Pandas

Für den Umgang mit XML- und JSON-Datenformaten in der C#-Entwicklung sind spezifische Codebeispiele erforderlich. In der modernen Softwareentwicklung sind XML und JSON zwei weit verbreitete Datenformate. XML (Extensible Markup Language) ist eine Auszeichnungssprache zum Speichern und Übertragen von Daten, während JSON (JavaScript Object Notation) ein leichtes Datenaustauschformat ist. Bei der C#-Entwicklung müssen wir häufig XML- und JSON-Daten verarbeiten und verarbeiten. Dieser Artikel konzentriert sich auf die Verwendung von C# zum Verarbeiten und Anhängen dieser beiden Datenformate

Anmerkungen in der Jackson-Bibliothek steuern die JSON-Serialisierung und -Deserialisierung: Serialisierung: @JsonIgnore: Ignorieren Sie die Eigenschaft @JsonProperty: Geben Sie den Namen an @JsonGetter: Verwenden Sie die get-Methode @JsonSetter: Verwenden Sie die set-Methode Deserialisierung: @JsonIgnoreProperties: Ignorieren Sie die Eigenschaft @ JsonProperty: Geben Sie den Namen @JsonCreator an: Verwenden Sie den Konstruktor @JsonDeserialize: Benutzerdefinierte Logik
