Der Unterschied zwischen Python-Arrays und -Listen

(*-*)浩
Freigeben: 2019-06-25 15:45:47
Original
29005 Leute haben es durchsucht

Liste in Python ist der integrierte Datentyp von Python. Die Datentypen in der Liste müssen nicht gleich sein, aber die Typen im Array müssen alle gleich sein. Der Datentyp in der Liste speichert einfach die Adresse, an der die Daten gespeichert sind. Es ist zu mühsam, eine Liste auf diese Weise zu speichern. 'a'] erfordert 4 Zeiger und vier Daten, erhöht den Speicher und verbraucht CPU. Das in Numpy gekapselte Array verfügt über sehr leistungsstarke Funktionen. Die gleichen Datentypen werden darin gespeichert

Der Unterschied zwischen Python-Arrays und -Listen

Python selbst hat keinen Array-Typ, aber er In der Numpy-Bibliothek gibt es Array-Typen. Empfohlenes Lernen: Python-Video-Tutorial)

Beide können zur Verarbeitung mehrdimensionaler Arrays verwendet werden.

Das ndarray-Objekt in Numpy wird zur Verarbeitung mehrdimensionaler Arrays verwendet und dient als schneller und flexibler Big-Data-Container. Python-Listen können eindimensionale Arrays speichern, und mehrdimensionale Arrays können durch Verschachteln von Listen realisiert werden.

2 Speichereffizienz sowie Eingabe- und Ausgabeleistung sind unterschiedlich.

Numpy ist speziell für den Betrieb und die Berechnung von Arrays konzipiert. Die Speichereffizienz sowie die Eingabe- und Ausgabeleistung sind weitaus besser als bei verschachtelten Listen in Python. Je größer das Array, desto offensichtlicher sind die Vorteile von Numpy.

Datentyp mit 3 Elementen.

Im Allgemeinen muss der Typ aller Elemente in einem Numpy-Array gleich sein, während der Typ der Elemente in einer Python-Liste willkürlich ist, sodass Numpy-Arrays im Hinblick auf die allgemeine Leistung nicht so gut sind wie Python-Listen. Aber im wissenschaftlichen Rechnen können sie viele Schleifenanweisungen einsparen und die Codeverwendung ist viel einfacher als bei Python-Listen.

Erstellung eines Arrays

Beim Erstellen eines Numpy-Arrays kann der Parameter entweder eine Liste oder ein Tupel sein. Zum Beispiel:

>>> a=np.array((1,2,3))#参数是tuple
>>> b=np.array([6,7,8])#参数是list
>>> c=np.array([[1,2,3],[4,5,6]])#参数是二维list
Nach dem Login kopieren

Darüber hinaus können Sie auch andere von Numpy bereitgestellte Methoden verwenden, um ein Array zu erstellen, zum Beispiel:

>>> arr1=np.arange(1,10,1)
>>> arr2=np.linspace(1,10,10)
Nach dem Login kopieren

np.arange(a,b,c) bedeutet „generieren“. ein Array von a-b. Ein Array, das b mit einem Intervall von c enthält. Der Standarddatentyp ist int32. Aber Linspace(a,b,c) bedeutet, a-b gleichmäßig in c Punkte zu unterteilen, was b einschließt.

Weitere technische Artikel zum Thema Python finden Sie in der Spalte Python-Tutorial, um mehr darüber zu erfahren!

Das obige ist der detaillierte Inhalt vonDer Unterschied zwischen Python-Arrays und -Listen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage
Über uns Haftungsausschluss Sitemap
Chinesische PHP-Website:Online-PHP-Schulung für das Gemeinwohl,Helfen Sie PHP-Lernenden, sich schnell weiterzuentwickeln!