Der Unterschied zwischen Python-Arrays und -Listen
Liste in Python ist der integrierte Datentyp von Python. Die Datentypen in der Liste müssen nicht gleich sein, aber die Typen im Array müssen alle gleich sein. Der Datentyp in der Liste speichert einfach die Adresse, an der die Daten gespeichert sind. Es ist zu mühsam, eine Liste auf diese Weise zu speichern. 'a'] erfordert 4 Zeiger und vier Daten, erhöht den Speicher und verbraucht CPU. Das in Numpy gekapselte Array verfügt über sehr leistungsstarke Funktionen. Die gleichen Datentypen werden darin gespeichert
Python selbst hat keinen Array-Typ, aber er In der Numpy-Bibliothek gibt es Array-Typen. Empfohlenes Lernen: Python-Video-Tutorial)
Beide können zur Verarbeitung mehrdimensionaler Arrays verwendet werden.
Das ndarray-Objekt in Numpy wird zur Verarbeitung mehrdimensionaler Arrays verwendet und dient als schneller und flexibler Big-Data-Container. Python-Listen können eindimensionale Arrays speichern, und mehrdimensionale Arrays können durch Verschachteln von Listen realisiert werden.
2 Speichereffizienz sowie Eingabe- und Ausgabeleistung sind unterschiedlich.
Numpy ist speziell für den Betrieb und die Berechnung von Arrays konzipiert. Die Speichereffizienz sowie die Eingabe- und Ausgabeleistung sind weitaus besser als bei verschachtelten Listen in Python. Je größer das Array, desto offensichtlicher sind die Vorteile von Numpy.
Datentyp mit 3 Elementen.
Im Allgemeinen muss der Typ aller Elemente in einem Numpy-Array gleich sein, während der Typ der Elemente in einer Python-Liste willkürlich ist, sodass Numpy-Arrays im Hinblick auf die allgemeine Leistung nicht so gut sind wie Python-Listen. Aber im wissenschaftlichen Rechnen können sie viele Schleifenanweisungen einsparen und die Codeverwendung ist viel einfacher als bei Python-Listen.
Erstellung eines Arrays
Beim Erstellen eines Numpy-Arrays kann der Parameter entweder eine Liste oder ein Tupel sein. Zum Beispiel:
>>> a=np.array((1,2,3))#参数是tuple >>> b=np.array([6,7,8])#参数是list >>> c=np.array([[1,2,3],[4,5,6]])#参数是二维list
Darüber hinaus können Sie auch andere von Numpy bereitgestellte Methoden verwenden, um ein Array zu erstellen, zum Beispiel:
>>> arr1=np.arange(1,10,1) >>> arr2=np.linspace(1,10,10)
np.arange(a,b,c) bedeutet „generieren“. ein Array von a-b. Ein Array, das b mit einem Intervall von c enthält. Der Standarddatentyp ist int32. Aber Linspace(a,b,c) bedeutet, a-b gleichmäßig in c Punkte zu unterteilen, was b einschließt.
Weitere technische Artikel zum Thema Python finden Sie in der Spalte Python-Tutorial, um mehr darüber zu erfahren!
Das obige ist der detaillierte Inhalt vonDer Unterschied zwischen Python-Arrays und -Listen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

Alternative Verwendung von Python -Parameteranmerkungen in der Python -Programmierung, Parameteranmerkungen sind eine sehr nützliche Funktion, die den Entwicklern helfen kann, Funktionen besser zu verstehen und zu verwenden ...

Auswahl der Python-plattformübergreifenden Desktop-Anwendungsentwicklungsbibliothek Viele Python-Entwickler möchten Desktop-Anwendungen entwickeln, die sowohl auf Windows- als auch auf Linux-Systemen ausgeführt werden können ...

Warum kann mein Code nicht die von der API zurückgegebenen Daten erhalten? Bei der Programmierung stoßen wir häufig auf das Problem der Rückgabe von Nullwerten, wenn API aufruft, was nicht nur verwirrend ist ...

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen an? Uvicorn ist ein leichter Webserver, der auf ASGI basiert. Eine seiner Kernfunktionen ist es, auf HTTP -Anfragen zu hören und weiterzumachen ...

Wie lösten Python -Skripte an einem bestimmten Ort die Ausgabe in Cursorposition? Beim Schreiben von Python -Skripten ist es üblich, die vorherige Ausgabe an die Cursorposition zu löschen ...

Viele Entwickler verlassen sich auf PYPI (PythonpackageIndex) ...
