Was Python-Datenanalysten lernen müssen
Python-Datenanalyst. Heutzutage erfreut sich die Big-Data-Analyse großer Beliebtheit. Aus entwicklungstechnischer Sicht sind Python-Datenanalysten sehr vielversprechend. Aber nicht jedes Unternehmen kann Big-Data-Analysen durchführen. Bei der Arbeit mit Big Data sind mehrere Aspekte zu berücksichtigen: ob die Quelle der Big Data umfassend ist, was analysiert werden soll, wer es verwenden wird usw. Wenn Sie ein Unternehmen finden, das Big Data verarbeiten kann, wird das Gehalt natürlich immer noch beträchtlich sein. Um ein Python-Datenanalyst zu sein, müssen Sie einige Dinge lernen. Andernfalls werden Sie möglicherweise einfach Programmierer und helfen anderen, die Ergebnisse der Analyse zu erzielen.
Erstens: statistische Kenntnisse. (Empfohlenes Lernen: Python-Video-Tutorial)
Dies ist ein Mangel vieler Big-Data-Analysten. Natürlich geht es hier nicht nur um einfache Statistiken. Stattdessen umfasst es Mittelwert, Median, Standardabweichung, Varianz, Wahrscheinlichkeit, Hypothesentests usw. mit Zeit, Raum und Daten selbst. Es sollte nahezu den fortgeschrittenen Mathematikkenntnissen in Naturwissenschaften und Technik entsprechen oder sogar etwas höher sein. Sie müssen in der Lage sein zu modellieren, sonst werden Sie, wenn die Ergebnisse, die Sie analysieren, weit von der Realität entfernt sind, wahrscheinlich in ein paar Tagen gepackt und abgereist sein. Um ein gewöhnlicher Big-Data-Analyst zu sein, sind natürlich keine tiefgreifenden fortgeschrittenen Mathematikkenntnisse erforderlich, aber um ein großartiger Big-Data-Analyst zu sein, muss man immer wieder lernen.
Zweitens: Viele Leute denken nicht daran. Machen Sie sich besser mit Excel vertraut.
Natürlich müssen Sie nicht über fortgeschrittene Kenntnisse verfügen, aber Sie müssen auch häufig verwendete Funktionen beherrschen, zum Beispiel unter anderem Summe, Zählung, Sumif, usw. countif, find, if, left/right, Zeitumrechnung, Pivot-Tabellen, verschiedene Diagrammpraktiken usw. Wenn die Datenmenge nicht besonders groß ist, kann Excel viele Probleme lösen. Filtern Sie beispielsweise einige gestohlene Daten, sortieren Sie sie, wählen Sie Daten aus, die Bedingungen erfüllen usw.
Drittens: Üben Sie analytisches Denken.
Zum Beispiel strukturiertes Denken, Mindmapping oder Baidu-Mindmapping, McKinsey-Analyse, es wäre besser, etwas Smart, 5W2H, SWOT usw. zu kennen. Man muss es nicht tief und vollständig beherrschen, aber man muss etwas verstehen.
Viertens: Datenbankkenntnisse.
Big Data Big Data bedeutet, dass Sie eine Datenbank verwenden müssen, wenn viele Daten vorhanden sind und Excel eine so große Datenmenge nicht verarbeiten kann. Wenn es sich um eine relationale Datenbank wie Oracle, MySQL, SQLServer usw. handelt, müssen Sie lernen, SQL-Anweisungen, Filterung, Sortierung, Zusammenfassung usw. zu verwenden. Sie müssen auch nicht-relationale Datenbanken wie Cassandra, Mongodb, CouchDB, Redis, Riak, Membase, Neo4j und HBase usw. erlernen und mindestens ein oder zwei häufig verwendete Datenbanken wie Hbase, Mongodb, Redis kennen. usw.
Fünftens: Business Learning.
Tatsächlich ist für Big-Data-Analysten das Verständnis des Geschäfts wichtiger als das Verständnis der Daten. Die Datenanalyse spielt eine sehr wichtige Rolle bei der Geschäftsentwicklung der Branche. Wenn Sie das Geschäft nicht verstehen, entsprechen die Ergebnisse Ihrer Analyse möglicherweise nicht den Wünschen anderer.
Sechstens: Entwicklungstools und -umgebung.
Zum Beispiel: Linux OS, Hadoop (Speicherung von HDFS, Computing Yarn), Spark oder andere Middleware. Derzeit werden viele Entwicklungstools wie Python und andere Sprachtools verwendet.
Kurz gesagt, die Karriere als Big-Data-Analyst auf Senior- oder Director-Ebene ist ziemlich hirnintensiv. Wenn es sich bei dem, was Sie lernen und verstehen möchten, nur um reine Daten handelt, ist das Erlernen betriebswirtschaftlicher und statistischer Kenntnisse unerlässlich. Wenn Sie ein praktischer Big-Data-Analyst sind, beherrschen Sie möglicherweise nur bestimmte Teile. Für Big-Data-Entwicklungsingenieure ist es grundsätzlich erforderlich, die Entwicklungsumgebung, die Entwicklungssprache und die Anwendung verschiedener Diagramme zu beherrschen, was ebenfalls zufriedenstellend ist. Schließlich braucht ein Unternehmen Teamarbeit und eine Person kann ein Analyseprodukt entwickeln, wenn sie nur einen Teil davon kennt. Entscheide dich für etwas und tue es! Je härter Sie arbeiten, desto einfacher wird es, und je härter Sie arbeiten, desto besser wird es!
Weitere technische Artikel zum Thema Python finden Sie in der Spalte Python-Tutorial, um mehr darüber zu erfahren!
Das obige ist der detaillierte Inhalt vonWas Python-Datenanalysten lernen müssen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PS "Laden" Probleme werden durch Probleme mit Ressourcenzugriff oder Verarbeitungsproblemen verursacht: Die Lesegeschwindigkeit von Festplatten ist langsam oder schlecht: Verwenden Sie Crystaldiskinfo, um die Gesundheit der Festplatte zu überprüfen und die problematische Festplatte zu ersetzen. Unzureichender Speicher: Upgrade-Speicher, um die Anforderungen von PS nach hochauflösenden Bildern und komplexen Schichtverarbeitung zu erfüllen. Grafikkartentreiber sind veraltet oder beschädigt: Aktualisieren Sie die Treiber, um die Kommunikation zwischen PS und der Grafikkarte zu optimieren. Dateipfade sind zu lang oder Dateinamen haben Sonderzeichen: Verwenden Sie kurze Pfade und vermeiden Sie Sonderzeichen. Das eigene Problem von PS: Installieren oder reparieren Sie das PS -Installateur neu.

Ein PS, der beim Booten auf "Laden" steckt, kann durch verschiedene Gründe verursacht werden: Deaktivieren Sie korrupte oder widersprüchliche Plugins. Eine beschädigte Konfigurationsdatei löschen oder umbenennen. Schließen Sie unnötige Programme oder aktualisieren Sie den Speicher, um einen unzureichenden Speicher zu vermeiden. Upgrade auf ein Solid-State-Laufwerk, um die Festplatte zu beschleunigen. PS neu installieren, um beschädigte Systemdateien oder ein Installationspaketprobleme zu reparieren. Fehlerinformationen während des Startprozesses der Fehlerprotokollanalyse anzeigen.

Das Laden von Stottern tritt beim Öffnen einer Datei auf PS auf. Zu den Gründen gehören: zu große oder beschädigte Datei, unzureichender Speicher, langsame Festplattengeschwindigkeit, Probleme mit dem Grafikkarten-Treiber, PS-Version oder Plug-in-Konflikte. Die Lösungen sind: Überprüfen Sie die Dateigröße und -integrität, erhöhen Sie den Speicher, aktualisieren Sie die Festplatte, aktualisieren Sie den Grafikkartentreiber, deinstallieren oder deaktivieren Sie verdächtige Plug-Ins und installieren Sie PS. Dieses Problem kann effektiv gelöst werden, indem die PS -Leistungseinstellungen allmählich überprüft und genutzt wird und gute Dateimanagementgewohnheiten entwickelt werden.

PS -Karte ist "Laden"? Zu den Lösungen gehören: Überprüfung der Computerkonfiguration (Speicher, Festplatte, Prozessor), Reinigen der Festplattenfragmentierung, Aktualisierung des Grafikkartentreibers, Anpassung der PS -Einstellungen, der Neuinstallation von PS und der Entwicklung guter Programmiergewohnheiten.

Der Artikel führt den Betrieb der MySQL -Datenbank vor. Zunächst müssen Sie einen MySQL -Client wie MySQLworkBench oder Befehlszeilen -Client installieren. 1. Verwenden Sie den Befehl mySQL-uroot-P, um eine Verbindung zum Server herzustellen und sich mit dem Stammkonto-Passwort anzumelden. 2. Verwenden Sie die Erstellung von Createdatabase, um eine Datenbank zu erstellen, und verwenden Sie eine Datenbank aus. 3.. Verwenden Sie CreateTable, um eine Tabelle zu erstellen, Felder und Datentypen zu definieren. 4. Verwenden Sie InsertInto, um Daten einzulegen, Daten abzufragen, Daten nach Aktualisierung zu aktualisieren und Daten nach Löschen zu löschen. Nur indem Sie diese Schritte beherrschen, lernen, mit gemeinsamen Problemen umzugehen und die Datenbankleistung zu optimieren, können Sie MySQL effizient verwenden.

Der Schlüssel zur Federkontrolle liegt darin, seine allmähliche Natur zu verstehen. PS selbst bietet nicht die Möglichkeit, die Gradientenkurve direkt zu steuern, aber Sie können den Radius und die Gradientenweichheit flexius durch mehrere Federn, Matching -Masken und feine Selektionen anpassen, um einen natürlichen Übergangseffekt zu erzielen.

Die MySQL -Leistungsoptimierung muss von drei Aspekten beginnen: Installationskonfiguration, Indexierung und Abfrageoptimierung, Überwachung und Abstimmung. 1. Nach der Installation müssen Sie die my.cnf -Datei entsprechend der Serverkonfiguration anpassen, z. 2. Erstellen Sie einen geeigneten Index, um übermäßige Indizes zu vermeiden und Abfrageanweisungen zu optimieren, z. B. den Befehl Erklärung zur Analyse des Ausführungsplans; 3. Verwenden Sie das eigene Überwachungstool von MySQL (ShowProcessList, Showstatus), um die Datenbankgesundheit zu überwachen und die Datenbank regelmäßig zu sichern und zu organisieren. Nur durch kontinuierliche Optimierung dieser Schritte kann die Leistung der MySQL -Datenbank verbessert werden.

Die Ladeschnittstelle der PS-Karte kann durch die Software selbst (Dateibeschäftigung oder Plug-in-Konflikt), die Systemumgebung (ordnungsgemäße Treiber- oder Systemdateienbeschäftigung) oder Hardware (Hartscheibenbeschäftigung oder Speicherstickfehler) verursacht werden. Überprüfen Sie zunächst, ob die Computerressourcen ausreichend sind. Schließen Sie das Hintergrundprogramm und geben Sie den Speicher und die CPU -Ressourcen frei. Beheben Sie die PS-Installation oder prüfen Sie, ob Kompatibilitätsprobleme für Plug-Ins geführt werden. Aktualisieren oder Fallback die PS -Version. Überprüfen Sie den Grafikkartentreiber und aktualisieren Sie ihn und führen Sie die Systemdateiprüfung aus. Wenn Sie die oben genannten Probleme beheben, können Sie die Erkennung von Festplatten und Speichertests ausprobieren.
