LRU-Cache-Implementierung in Java
LRU ist die Abkürzung für „Least Latest Used“, was übersetzt „zuletzt verwendet“ bedeutet. Einfach ausgedrückt wird eine bestimmte Datenmenge zwischengespeichert es überschreitet Wenn der Schwellenwert festgelegt ist, werden einige abgelaufene Daten gelöscht.
Zum Beispiel speichern wir 10.000 Daten im Cache. Wenn die Datenmenge weniger als 10.000 beträgt, können wir sie nach Belieben hinzufügen. Um dies sicherzustellen, müssen wir neue Daten hinzufügen und die abgelaufenen Daten löschen Wir speichern maximal 10.000 Teile. Wie lässt sich also ermitteln, welche abgelaufenen Daten gelöscht werden sollen? Bei Verwendung des LRU-Algorithmus werden die ältesten Daten gelöscht.
Lassen Sie uns über die Java-Version der LRU-Cache-Implementierung sprechen: (Empfohlen: Java-Video-Tutorial)
Normalerweise gibt es zwei Optionen für die Implementierung des LRU-Cache in Java, eine davon ist Um LinkedHashMap zu verwenden, müssen Sie die Datenstruktur mithilfe einer verknüpften Liste + HashMap selbst entwerfen
LinkedHashMap-Implementierung von LRU Cache
LinkedHashMap selbst hat es implementiert Die Sequenzspeicherung speichert Elemente standardmäßig in der Reihenfolge, in der sie hinzugefügt werden. Sie können die Speicherung auch in der Zugriffsreihenfolge aktivieren, d. h. die zuletzt gelesenen Daten werden vorne platziert, die frühesten gelesenen Daten werden am Ende platziert Dann wird auch entschieden, ob die ältesten Daten gelöscht werden sollen. Sie geben standardmäßig false zurück, dh die Daten werden nicht gelöscht.
Die Art und Weise, wie wir LinkedHashMap zum Implementieren von LRU-Caching verwenden, besteht darin, eine einfache Erweiterung von LinkedHashMap zu implementieren. Es gibt zwei Erweiterungsmethoden, eine ist Vererbung und die andere ist Delegation.
//LinkedHashMap的一个构造函数,当参数accessOrder为true时,即会按照访问顺序排序,最近访问的放在最前,最早访问的放在后面 public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) { super(initialCapacity, loadFactor); this.accessOrder = accessOrder; } //LinkedHashMap自带的判断是否删除最老的元素方法,默认返回false,即不删除老数据 //我们要做的就是重写这个方法,当满足一定条件时删除老数据 protected boolean removeEldestEntry(Map.Entry<K,V> eldest) { return false; }
LRU-Cache-LinkedHashMap-Implementierung (Vererbung)
Die Vererbungsmethode ist relativ einfach zu implementieren und implementiert die Map-Schnittstelle und kann dies auch sein Wird in einer Multithread-Umgebung verwendet. Sie können die Methode Collections.synchronizedMap() verwenden, um threadsichere Vorgänge zu implementieren.
package cn.lzrabbit.structure.lru; import java.util.LinkedHashMap; import java.util.Map; /** * Created by liuzhao on 14-5-15. */ public class LRUCache2<K, V> extends LinkedHashMap<K, V> { private final int MAX_CACHE_SIZE; public LRUCache2(int cacheSize) { super((int) Math.ceil(cacheSize / 0.75) + 1, 0.75f, true); MAX_CACHE_SIZE = cacheSize; } @Override protected boolean removeEldestEntry(Map.Entry eldest) { return size() > MAX_CACHE_SIZE; } @Override public String toString() { StringBuilder sb = new StringBuilder(); for (Map.Entry<K, V> entry : entrySet()) { sb.append(String.format("%s:%s ", entry.getKey(), entry.getValue())); } return sb.toString(); } }
Dies ist eine relativ standardmäßige Implementierung. Im tatsächlichen Gebrauch ist das Schreiben auf diese Weise immer noch etwas umständlich. Eine praktischere Methode besteht darin, wie folgt zu schreiben und die Mühe wegzulassen, eine Klasse allein zu sehen
final int cacheSize = 100; Map<String, String> map = new LinkedHashMap<String, String>((int) Math.ceil(cacheSize / 0.75f) + 1, 0.75f, true) { @Override protected boolean removeEldestEntry(Map.Entry<String, String> eldest) { return size() > cacheSize; } };
LRU-Cache LinkedHashMap (Delegation) Implementierung
Die Delegationsmethode ist eleganter, aber da Map keine implementierte Schnittstelle ist, muss die Thread-Synchronisierung selbst durchgeführt werden
package cn.lzrabbit.structure.lru; import java.util.LinkedHashMap; import java.util.Map; import java.util.Set; /** * Created by liuzhao on 14-5-13. */ public class LRUCache3<K, V> { private final int MAX_CACHE_SIZE; private final float DEFAULT_LOAD_FACTOR = 0.75f; LinkedHashMap<K, V> map; public LRUCache3(int cacheSize) { MAX_CACHE_SIZE = cacheSize; //根据cacheSize和加载因子计算hashmap的capactiy,+1确保当达到cacheSize上限时不会触发hashmap的扩容, int capacity = (int) Math.ceil(MAX_CACHE_SIZE / DEFAULT_LOAD_FACTOR) + 1; map = new LinkedHashMap(capacity, DEFAULT_LOAD_FACTOR, true) { @Override protected boolean removeEldestEntry(Map.Entry eldest) { return size() > MAX_CACHE_SIZE; } }; } public synchronized void put(K key, V value) { map.put(key, value); } public synchronized V get(K key) { return map.get(key); } public synchronized void remove(K key) { map.remove(key); } public synchronized Set<Map.Entry<K, V>> getAll() { return map.entrySet(); } public synchronized int size() { return map.size(); } public synchronized void clear() { map.clear(); } @Override public String toString() { StringBuilder sb = new StringBuilder(); for (Map.Entry entry : map.entrySet()) { sb.append(String.format("%s:%s ", entry.getKey(), entry.getValue())); } return sb.toString(); } }
LRU-Cache-verknüpfte Liste + HashMap-Implementierung
Hinweis: Diese Implementierung ist nicht threadsicher. Wenn sie in einer Multithread-Umgebung verwendet wird, muss synchronisiert zu den relevanten Methoden hinzugefügt werden, um threadsichere Vorgänge zu erreichen
package cn.lzrabbit.structure.lru; import java.util.HashMap; /** * Created by liuzhao on 14-5-12. */ public class LRUCache1<K, V> { private final int MAX_CACHE_SIZE; private Entry first; private Entry last; private HashMap<K, Entry<K, V>> hashMap; public LRUCache1(int cacheSize) { MAX_CACHE_SIZE = cacheSize; hashMap = new HashMap<K, Entry<K, V>>(); } public void put(K key, V value) { Entry entry = getEntry(key); if (entry == null) { if (hashMap.size() >= MAX_CACHE_SIZE) { hashMap.remove(last.key); removeLast(); } entry = new Entry(); entry.key = key; } entry.value = value; moveToFirst(entry); hashMap.put(key, entry); } public V get(K key) { Entry<K, V> entry = getEntry(key); if (entry == null) return null; moveToFirst(entry); return entry.value; } public void remove(K key) { Entry entry = getEntry(key); if (entry != null) { if (entry.pre != null) entry.pre.next = entry.next; if (entry.next != null) entry.next.pre = entry.pre; if (entry == first) first = entry.next; if (entry == last) last = entry.pre; } hashMap.remove(key); } private void moveToFirst(Entry entry) { if (entry == first) return; if (entry.pre != null) entry.pre.next = entry.next; if (entry.next != null) entry.next.pre = entry.pre; if (entry == last) last = last.pre; if (first == null || last == null) { first = last = entry; return; } entry.next = first; first.pre = entry; first = entry; entry.pre = null; } private void removeLast() { if (last != null) { last = last.pre; if (last == null) first = null; else last.next = null; } } private Entry<K, V> getEntry(K key) { return hashMap.get(key); } @Override public String toString() { StringBuilder sb = new StringBuilder(); Entry entry = first; while (entry != null) { sb.append(String.format("%s:%s ", entry.key, entry.value)); entry = entry.next; } return sb.toString(); } class Entry<K, V> { public Entry pre; public Entry next; public K key; public V value; } }
FIFO-Implementierung von LinkedHashMap
FIFO Dies ist die Abkürzung für „First Input First Output“, was oft als „First In, First Out“ bezeichnet wird. Standardmäßig wird LinkedHashMap in gespeichert Die Reihenfolge der Hinzufügung. Wir müssen nur die Methode „removeEldestEntry“ umschreiben, um einen FIFO-Cache einfach zu implementieren. Die vereinfachte Version des Implementierungscodes lautet wie folgt:
Aufrufbeispiel
Testcodefinal int cacheSize = 5; LinkedHashMap<Integer, String> lru = new LinkedHashMap<Integer, String>() { @Override protected boolean removeEldestEntry(Map.Entry<Integer, String> eldest) { return size() > cacheSize; } };
package cn.lzrabbit.structure.lru; import cn.lzrabbit.ITest; import java.util.LinkedHashMap; import java.util.Map; /** * Created by liuzhao on 14-5-15. */ public class LRUCacheTest { public static void main(String[] args) throws Exception { System.out.println("start..."); lruCache1(); lruCache2(); lruCache3(); lruCache4(); System.out.println("over..."); } static void lruCache1() { System.out.println(); System.out.println("===========================LRU 链表实现==========================="); LRUCache1<Integer, String> lru = new LRUCache1(5); lru.put(1, "11"); lru.put(2, "11"); lru.put(3, "11"); lru.put(4, "11"); lru.put(5, "11"); System.out.println(lru.toString()); lru.put(6, "66"); lru.get(2); lru.put(7, "77"); lru.get(4); System.out.println(lru.toString()); System.out.println(); } static <T> void lruCache2() { System.out.println(); System.out.println("===========================LRU LinkedHashMap(inheritance)实现==========================="); LRUCache2<Integer, String> lru = new LRUCache2(5); lru.put(1, "11"); lru.put(2, "11"); lru.put(3, "11"); lru.put(4, "11"); lru.put(5, "11"); System.out.println(lru.toString()); lru.put(6, "66"); lru.get(2); lru.put(7, "77"); lru.get(4); System.out.println(lru.toString()); System.out.println(); } static void lruCache3() { System.out.println(); System.out.println("===========================LRU LinkedHashMap(delegation)实现==========================="); LRUCache3<Integer, String> lru = new LRUCache3(5); lru.put(1, "11"); lru.put(2, "11"); lru.put(3, "11"); lru.put(4, "11"); lru.put(5, "11"); System.out.println(lru.toString()); lru.put(6, "66"); lru.get(2); lru.put(7, "77"); lru.get(4); System.out.println(lru.toString()); System.out.println(); } static void lruCache4() { System.out.println(); System.out.println("===========================FIFO LinkedHashMap默认实现==========================="); final int cacheSize = 5; LinkedHashMap<Integer, String> lru = new LinkedHashMap<Integer, String>() { @Override protected boolean removeEldestEntry(Map.Entry<Integer, String> eldest) { return size() > cacheSize; } }; lru.put(1, "11"); lru.put(2, "11"); lru.put(3, "11"); lru.put(4, "11"); lru.put(5, "11"); System.out.println(lru.toString()); lru.put(6, "66"); lru.get(2); lru.put(7, "77"); lru.get(4); System.out.println(lru.toString()); System.out.println(); } }
Java Basic Tutorial.
Das obige ist der detaillierte Inhalt vonLRU-Cache-Implementierung in Java. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Leitfaden zur perfekten Zahl in Java. Hier besprechen wir die Definition, Wie prüft man die perfekte Zahl in Java?, Beispiele mit Code-Implementierung.

Leitfaden für Weka in Java. Hier besprechen wir die Einführung, die Verwendung von Weka Java, die Art der Plattform und die Vorteile anhand von Beispielen.

Leitfaden zur Smith-Zahl in Java. Hier besprechen wir die Definition: Wie überprüft man die Smith-Nummer in Java? Beispiel mit Code-Implementierung.

In diesem Artikel haben wir die am häufigsten gestellten Fragen zu Java Spring-Interviews mit ihren detaillierten Antworten zusammengestellt. Damit Sie das Interview knacken können.

Java 8 führt die Stream -API ein und bietet eine leistungsstarke und ausdrucksstarke Möglichkeit, Datensammlungen zu verarbeiten. Eine häufige Frage bei der Verwendung von Stream lautet jedoch: Wie kann man von einem Foreach -Betrieb brechen oder zurückkehren? Herkömmliche Schleifen ermöglichen eine frühzeitige Unterbrechung oder Rückkehr, aber die Stream's foreach -Methode unterstützt diese Methode nicht direkt. In diesem Artikel werden die Gründe erläutert und alternative Methoden zur Implementierung vorzeitiger Beendigung in Strahlverarbeitungssystemen erforscht. Weitere Lektüre: Java Stream API -Verbesserungen Stream foreach verstehen Die Foreach -Methode ist ein Terminalbetrieb, der einen Vorgang für jedes Element im Stream ausführt. Seine Designabsicht ist

Anleitung zum TimeStamp to Date in Java. Hier diskutieren wir auch die Einführung und wie man Zeitstempel in Java in ein Datum konvertiert, zusammen mit Beispielen.

Kapseln sind dreidimensionale geometrische Figuren, die aus einem Zylinder und einer Hemisphäre an beiden Enden bestehen. Das Volumen der Kapsel kann berechnet werden, indem das Volumen des Zylinders und das Volumen der Hemisphäre an beiden Enden hinzugefügt werden. In diesem Tutorial wird erörtert, wie das Volumen einer bestimmten Kapsel in Java mit verschiedenen Methoden berechnet wird. Kapselvolumenformel Die Formel für das Kapselvolumen lautet wie folgt: Kapselvolumen = zylindrisches Volumenvolumen Zwei Hemisphäre Volumen In, R: Der Radius der Hemisphäre. H: Die Höhe des Zylinders (ohne die Hemisphäre). Beispiel 1 eingeben Radius = 5 Einheiten Höhe = 10 Einheiten Ausgabe Volumen = 1570,8 Kubikeinheiten erklären Berechnen Sie das Volumen mithilfe der Formel: Volumen = π × R2 × H (4

Spring Boot vereinfacht die Schaffung robuster, skalierbarer und produktionsbereiteter Java-Anwendungen, wodurch die Java-Entwicklung revolutioniert wird. Der Ansatz "Übereinkommen über Konfiguration", der dem Feder -Ökosystem inhärent ist, minimiert das manuelle Setup, Allo
