Heim > Backend-Entwicklung > Python-Tutorial > So verwenden Sie Pandas, um Excel in Python zu verarbeiten

So verwenden Sie Pandas, um Excel in Python zu verarbeiten

angryTom
Freigeben: 2020-02-11 16:10:49
Original
41337 Leute haben es durchsucht

So verwenden Sie Pandas, um Excel in Python zu verarbeiten

python使用pandas处理excel的方法

一、配置环境

1、pandas依赖处理Excel的xlrd模块,安装命令是:

pip install xlrd
Nach dem Login kopieren

2、安装pandas模块还需要一定的编码环境,确保你的电脑有这些环境:Net.4 、VC-Compiler以及winsdk_web。

3、开始安装pandas,安装命令是:

pip install pandas
Nach dem Login kopieren

二、pandas操作Excel表单

注意:加密文件是无法正常读写的

首先需准备一个表单

(推荐学习:Python视频教程

1、读取excel文件的方式一:默认读取第一个表单:

import pandas as pd
# 方法一:默认读取第一个表单
df = pd.read_excel("C:\\文件路径\\文件名.xlsx")  # 直接默认读取到Excel的第一个表单
data = df.head()  # 默认读取前5行的数据
print("获取到所有的值:\n{0}".format(data))  # 格式化输出
Nach dem Login kopieren

得到的结果是一个二维矩阵,如下图所示:

2、读取excel文件的方式二:通过制定表单名的方式读取:

import pandas as pd
# 方法一:通过指定表单名的方式来读取
df = pd.read_excel("C:\\文件路径\\文件名.xlsx ", sheet_name='测试用例')
# 直接默认读取到Excel的第一个表单
data = df.head()  # 默认读取前5行的数据
print("获取到所有的值:\n{0}".format(data))  # 格式化输出
Nach dem Login kopieren

得到的结果是一个二维矩阵,如下图所示:

3、读取excel文件的方法三:通过表单索引来指定要访问的表单,0表示第一个表单

import pandas as pd
# df = pd.read_excel(' C:\\文件路径\\文件名.xlsx '])
# 可以通过表单名同时指定多个
df = pd.read_excel(' C:\\文件路径\\文件名.xlsx ', sheet_name=0)  # 可以通过表单索引来指定读取的表单
# df = pd.read_excel(' C:\\文件路径\\文件名.xlsx ', sheet_name=['功能模块', 1])  # 可以混合的方式来指定
# df = pd.read_excel(' C:\\文件路径\\文件名.xlsx ', sheet_name=[1, 2])  # 可以通过索引 同时指定多个
data = df.values  # 获取所有的数据,注意这里不能用head()方法哦~
print("获取到所有的值:\n{0}".format(data))  # 格式化输出
Nach dem Login kopieren

三、pandas操作Excel的行列

1:读取指定的单行,数据会存在列表里面

import pandas as pd
df = pd.read_excel(' C:\\文件路径\\文件名.xlsx ')
data = df.ix[0].values  # 0表示第一行 这里读取数据并不包含表头,要注意哦!
print("获取到所有的值:\n{0}".format(data))  # 格式化输出
Nach dem Login kopieren

2:读取指定的多行,数据会存在嵌套的列表里面:

import pandas as pd
df = pd.read_excel(' C:\\文件路径\\文件名.xlsx ')
data = df.ix[[1, 2]].values  # 读取指定多行的话,就要在ix[]里面嵌套列表指定行数
print("获取到所有的值:\n{0}".format(data))  # 格式化输出
Nach dem Login kopieren

3:读取指定的行列:

import pandas as pd
df = pd.read_excel(' C:\\文件路径\\文件名.xlsx ')
data = df.ix[1, 2]  # 读取第一行第二列的值,这里不需要嵌套列表
print("获取到所有的值:\n{0}".format(data))  # 格式化输出
Nach dem Login kopieren

4:读取指定的多行多列值:

import pandas as pd
df = pd.read_excel(' C:\\文件路径\\文件名.xlsx ')
data = df.ix[[1, 2], ['序号', '功能划分']].values  # 读取第一行第二行的序号以及功能划分列的值,这里需要嵌套列表
print("获取到所有的值:\n{0}".format(data))  # 格式化输出
Nach dem Login kopieren

5:获取所有行的指定列

import pandas as pd
df = pd.read_excel(' C:\\文件路径\\文件名.xlsx ')
data = df.ix[:, ['序号', '功能划分']].values  # 读所有行的“序号”以及“功能划分”列的值,这里需要嵌套列表
print("获取到所有的值:\n{0}".format(data))  # 格式化输出
Nach dem Login kopieren

6:获取行号并打印输出

import pandas as pd
df = pd.read_excel(' C:\\文件路径\\文件名.xlsx ')
print("输出行号列表", df.index.values)
Nach dem Login kopieren

7:获取列名并打印输出

import pandas as pd
df = pd.read_excel(' C:\\文件路径\\文件名.xlsx ')
print("输出列标题", df.columns.values)
Nach dem Login kopieren

8:获取指定行数的值:

import pandas as pd
df = pd.read_excel(' C:\\文件路径\\文件名.xlsx ')
print("输出值:\n", df.sample(3).values)  # 这个方法类似于head()方法以及df.values方法
Nach dem Login kopieren

9:获取指定列的值:

import pandas as pd
df = pd.read_excel(' C:\\文件路径\\文件名.xlsx ')
print("输出值\n", df['功能划分'].values)
Nach dem Login kopieren

四、pandas处理Excel数据成为字典

import pandas as pd
df = pd.read_excel(' C:\\文件路径\\文件名.xlsx ')
test_data = []
for i in df.index.values:  # 获取行号的索引,并对其进行遍历:
    # 根据i来获取每一行指定的数据 并利用to_dict转成字典
    row_data = df.ix[i, ['序号', '功能划分', '备注']].to_dict()
    test_data.append(row_data)
print("最终获取到的数据是:\n{0}".format(test_data))
Nach dem Login kopieren

推荐:Python教程

Das obige ist der detaillierte Inhalt vonSo verwenden Sie Pandas, um Excel in Python zu verarbeiten. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage