Unterstützt Docker GPU?

Freigeben: 2020-04-03 09:02:33
Original
2892 Leute haben es durchsucht

Unterstützt Docker GPU?

Docker unterstützt GPU und Docker kann GPU über nvidia-docker2 verwenden. Konfigurieren Sie die Laufzeit für die Verwendung von nvidia in der Datei daemon.json. Führen Sie nach dem Starten des Containers nvidia-smi aus, um alle GPUs anzuzeigen.

Einführung in die Methode zum Mounten der GPU mit Docker:

Verwenden Sie nvidia-docker2

Kurz gesagt, mit nvidia-docker2 können Sie die GPU mühelos verwenden, genau wie Sie es brauchen Um die Laufzeit zu konfigurieren, können Sie nach dem Starten des Containers mit nvidia

cat /etc/docker/daemon.json
{
    "default-runtime": "nvidia",
    "runtimes": {
        "nvidia": {
            "path": "/usr/bin/nvidia-container-runtime",
            "runtimeArgs": []
        }
    },
    "exec-opts": ["native.cgroupdriver=systemd"]
}
Nach dem Login kopieren

alle GPU-Karten anzeigen, indem Sie nvidia-smi ausführen:

[root@localhost] docker run -it 98b41a1e975d bash
root@6db1dd28459d:/notebooks# nvidia-smi

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 410.79       Driver Version: 410.79       CUDA Version: 10.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla V100-SXM2...  On   | 00000000:8A:00.0 Off |                    0 |
| N/A   40C    P0    57W / 300W |   4053MiB / 16130MiB |      4%      Default |
+-------------------------------+----------------------+----------------------+
|   1  Tesla V100-SXM2...  On   | 00000000:8B:00.0 Off |                    0 |
| N/A   38C    P0    40W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   2  Tesla V100-SXM2...  On   | 00000000:8C:00.0 Off |                    0 |
| N/A   42C    P0    46W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   3  Tesla V100-SXM2...  On   | 00000000:8D:00.0 Off |                    0 |
| N/A   39C    P0    40W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   4  Tesla V100-SXM2...  On   | 00000000:B3:00.0 Off |                    0 |
| N/A   39C    P0    42W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   5  Tesla V100-SXM2...  On   | 00000000:B4:00.0 Off |                    0 |
| N/A   41C    P0    57W / 300W |   7279MiB / 16130MiB |      4%      Default |
+-------------------------------+----------------------+----------------------+
|   6  Tesla V100-SXM2...  On   | 00000000:B5:00.0 Off |                    0 |
| N/A   40C    P0    45W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   7  Tesla V100-SXM2...  On   | 00000000:B6:00.0 Off |                    0 |
| N/A   41C    P0    44W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+
Nach dem Login kopieren

Sie können einen Teil der Bibliothek über NVIDIA_DRIVER_CAPABILITIES hinzufügen. Über NVIDIA_VISIBLE_DEVICES können Sie nur bestimmte GPU-Karten verwenden

[root@localhost cuda-9.0]# docker run -it  --env NVIDIA_DRIVER_CAPABILITIES="compute,utility"  --env NVIDIA_VISIBLE_DEVICES=0,1 98b41a1e975d bash
root@97bf127ff83a:/notebooks# nvidia-smi
Tue Oct 15 09:29:45 2019
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 410.79       Driver Version: 410.79       CUDA Version: 10.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla V100-SXM2...  On   | 00000000:8A:00.0 Off |                    0 |
| N/A   39C    P0    57W / 300W |   4053MiB / 16130MiB |      3%      Default |
+-------------------------------+----------------------+----------------------+
|   1  Tesla V100-SXM2...  On   | 00000000:8B:00.0 Off |                    0 |
| N/A   37C    P0    40W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+
Nach dem Login kopieren

Weitere verwandte Tutorials finden Sie in der Spalte Docker-Tutorial auf der chinesischen PHP-Website.

Das obige ist der detaillierte Inhalt vonUnterstützt Docker GPU?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage