

Wer hat als erster die Grundlage der aktuellen Big-Data-Technologie vorgeschlagen?
Wer hat zuerst die Grundlage der aktuellen Big-Data-Technologie vorgeschlagen?
Die Grundlage der aktuellen Big-Data-Technologie wurde zuerst von „Google“ vorgeschlagen.
Big Data, ein Begriff aus der IT-Branche, bezeichnet eine Sammlung von Daten, die mit herkömmlichen Softwaretools nicht innerhalb eines bestimmten Zeitraums erfasst, verwaltet und verarbeitet werden können. Es erfordert neue Verarbeitungsmodelle, um eine bessere Entscheidungsfindung zu ermöglichen. Erstellen riesiger, wachstumsstarker und diversifizierter Informationsressourcen mit leistungsstarken Funktionen, Erkenntnissen und Prozessoptimierungsmöglichkeiten.
In „The Age of Big Data“ von Victor Meier-Schoenberg und Kenneth Cukier bezieht sich Big Data auf die Nutzung aller Daten anstelle von Abkürzungen wie Zufallsanalysen (Stichprobenanalyse und -verarbeitung). Die 5V-Merkmale von Big Data (vorgeschlagen von IBM): Volumen, Geschwindigkeit, Vielfalt, Wert und Veracity.
Gartner, eine Forschungsorganisation für „Big Data“, gab diese Definition. „Big Data“ erfordert neue Verarbeitungsmodelle mit stärkerer Entscheidungskraft, Erkenntnissen und Möglichkeiten zur Prozessoptimierung, um sich an die massiven, hohen Wachstumsraten und diversifizierten Informationsbestände anzupassen.
Die Definition des McKinsey Global Institute lautet: Eine Datensammlung, die so groß ist, dass ihre Erfassung, Speicherung, Verwaltung und Analyse die Fähigkeiten herkömmlicher Datenbanksoftwaretools bei weitem übersteigt. Sie verfügt über einen enormen Datenumfang und eine schnelle Verarbeitung weist vier Hauptmerkmale auf: Datenfluss, vielfältige Datentypen und geringe Wertedichte.
Die strategische Bedeutung der Big-Data-Technologie liegt nicht in der Beherrschung riesiger Datenmengen, sondern in der professionellen Verarbeitung dieser bedeutungsvollen Daten. Mit anderen Worten: Vergleicht man Big Data mit einer Branche, dann liegt der Schlüssel zur Rentabilität dieser Branche in der Verbesserung der „Verarbeitungsfähigkeiten“ von Daten und der Erzielung des „Mehrwerts“ von Daten durch „Verarbeitung“.
Technisch gesehen ist die Beziehung zwischen Big Data und Cloud Computing so untrennbar wie die beiden Seiten derselben Medaille. Big Data kann nicht von einem einzelnen Computer verarbeitet werden und muss eine verteilte Architektur verwenden. Sein Merkmal liegt im verteilten Data Mining großer Datenmengen. Es muss jedoch auf verteilter Verarbeitung, verteilter Datenbank und Cloud-Speicher sowie der Virtualisierungstechnologie des Cloud Computing basieren.
Mit dem Aufkommen des Cloud-Zeitalters hat auch Big Data (Big Data) immer mehr Aufmerksamkeit auf sich gezogen. Das Analystenteam ist der Ansicht, dass Big Data im Allgemeinen zur Beschreibung der großen Mengen unstrukturierter und halbstrukturierter Daten verwendet wird, die von einem Unternehmen erstellt werden und deren Herunterladen in eine relationale Datenbank zur Analyse zu viel Zeit und Geld kosten würde. Big-Data-Analysen werden häufig mit Cloud Computing in Verbindung gebracht, da für die Echtzeitanalyse großer Datenmengen Frameworks wie MapReduce erforderlich sind, um die Arbeit auf Dutzende, Hunderte oder sogar Tausende von Computern zu verteilen.
Big Data erfordert spezielle Techniken, um große Datenmengen über einen erträglichen Zeitraum hinweg effizient zu verarbeiten. Zu den auf Big Data anwendbaren Technologien gehören MPP-Datenbanken (Massively Parallel Processing), Data Mining, verteilte Dateisysteme, verteilte Datenbanken, Cloud-Computing-Plattformen, das Internet und skalierbare Speichersysteme.
Das obige ist der detaillierte Inhalt vonWer hat als erster die Grundlage der aktuellen Big-Data-Technologie vorgeschlagen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Fähigkeiten zur Verarbeitung von Big-Data-Strukturen: Chunking: Teilen Sie den Datensatz auf und verarbeiten Sie ihn in Blöcken, um den Speicherverbrauch zu reduzieren. Generator: Generieren Sie Datenelemente einzeln, ohne den gesamten Datensatz zu laden, geeignet für unbegrenzte Datensätze. Streaming: Lesen Sie Dateien oder fragen Sie Ergebnisse Zeile für Zeile ab, geeignet für große Dateien oder Remote-Daten. Externer Speicher: Speichern Sie die Daten bei sehr großen Datensätzen in einer Datenbank oder NoSQL.

Im Internetzeitalter ist Big Data zu einer neuen Ressource geworden. Mit der kontinuierlichen Verbesserung der Big-Data-Analysetechnologie ist die Nachfrage nach Big-Data-Programmierung immer dringlicher geworden. Als weit verbreitete Programmiersprache sind die einzigartigen Vorteile von C++ bei der Big-Data-Programmierung immer deutlicher hervorgetreten. Im Folgenden werde ich meine praktischen Erfahrungen in der C++-Big-Data-Programmierung teilen. 1. Auswahl der geeigneten Datenstruktur Die Auswahl der geeigneten Datenstruktur ist ein wichtiger Bestandteil beim Schreiben effizienter Big-Data-Programme. In C++ gibt es eine Vielzahl von Datenstrukturen, die wir verwenden können, z. B. Arrays, verknüpfte Listen, Bäume, Hash-Tabellen usw.

AEC/O (Architecture, Engineering & Construction/Operation) bezieht sich auf die umfassenden Dienstleistungen, die Architekturdesign, Ingenieurdesign, Bau und Betrieb in der Bauindustrie anbieten. Im Jahr 2024 steht die AEC/O-Branche angesichts des technologischen Fortschritts vor sich ändernden Herausforderungen. In diesem Jahr wird voraussichtlich die Integration fortschrittlicher Technologien stattfinden, was einen Paradigmenwechsel in Design, Bau und Betrieb einläuten wird. Als Reaktion auf diese Veränderungen definieren Branchen Arbeitsprozesse neu, passen Prioritäten an und verbessern die Zusammenarbeit, um sich an die Bedürfnisse einer sich schnell verändernden Welt anzupassen. Die folgenden fünf großen Trends in der AEC/O-Branche werden im Jahr 2024 zu Schlüsselthemen und empfehlen den Weg in eine stärker integrierte, reaktionsfähigere und nachhaltigere Zukunft: integrierte Lieferkette, intelligente Fertigung

1. Hintergrund des Baus der 58-Portrait-Plattform Zunächst möchte ich Ihnen den Hintergrund des Baus der 58-Portrait-Plattform mitteilen. 1. Das traditionelle Denken der traditionellen Profiling-Plattform reicht nicht mehr aus. Der Aufbau einer Benutzer-Profiling-Plattform basiert auf Data-Warehouse-Modellierungsfunktionen, um Daten aus mehreren Geschäftsbereichen zu integrieren, um genaue Benutzerporträts zu erstellen Und schließlich muss es über Datenplattformfunktionen verfügen, um Benutzerprofildaten effizient zu speichern, abzufragen und zu teilen sowie Profildienste bereitzustellen. Der Hauptunterschied zwischen einer selbst erstellten Business-Profiling-Plattform und einer Middle-Office-Profiling-Plattform besteht darin, dass die selbst erstellte Profiling-Plattform einen einzelnen Geschäftsbereich bedient und bei Bedarf angepasst werden kann. Die Mid-Office-Plattform bedient mehrere Geschäftsbereiche und ist komplex Modellierung und bietet allgemeinere Funktionen. 2.58 Benutzerporträts vom Hintergrund der Porträtkonstruktion im Mittelbahnsteig 58

Im heutigen Big-Data-Zeitalter sind Datenverarbeitung und -analyse zu einer wichtigen Unterstützung für die Entwicklung verschiedener Branchen geworden. Als Programmiersprache mit hoher Entwicklungseffizienz und überlegener Leistung hat die Go-Sprache im Bereich Big Data nach und nach Aufmerksamkeit erregt. Im Vergleich zu anderen Sprachen wie Java, Python usw. verfügt die Go-Sprache jedoch über eine relativ unzureichende Unterstützung für Big-Data-Frameworks, was einigen Entwicklern Probleme bereitet hat. In diesem Artikel werden die Hauptgründe für das Fehlen eines Big-Data-Frameworks in der Go-Sprache untersucht, entsprechende Lösungen vorgeschlagen und anhand spezifischer Codebeispiele veranschaulicht. 1. Gehen Sie zur Sprache

Die Produkteinführung im Herbst 2023 von Yizhiwei ist erfolgreich abgeschlossen! Lassen Sie uns gemeinsam die Highlights der Konferenz Revue passieren lassen! 1. Intelligente, integrative Offenheit, die es digitalen Zwillingen ermöglicht, produktiv zu werden. Ning Haiyuan, Mitbegründer von Kangaroo Cloud und CEO von Yizhiwei, sagte in seiner Eröffnungsrede: Beim diesjährigen strategischen Treffen des Unternehmens haben wir die Hauptrichtung der Produktforschung und -entwicklung als festgelegt „Intelligente inklusive Offenheit“ „Drei Kernfähigkeiten“, wobei wir uns auf die drei Kernschlüsselwörter „intelligente inklusive Offenheit“ konzentrieren, schlagen wir außerdem das Entwicklungsziel vor, „digitale Zwillinge zu einer Produktivkraft zu machen“. 2. EasyTwin: Entdecken Sie eine neue Digital-Twin-Engine, die einfacher zu verwenden ist 1. Erkunden Sie von 0.1 bis 1.0 weiterhin die Digital-Twin-Fusion-Rendering-Engine, um bessere Lösungen mit ausgereiftem 3D-Bearbeitungsmodus, praktischen interaktiven Blaupausen und umfangreichen Modellressourcen zu erhalten

Als Open-Source-Programmiersprache hat die Go-Sprache in den letzten Jahren nach und nach große Aufmerksamkeit und Verwendung gefunden. Es wird von Programmierern wegen seiner Einfachheit, Effizienz und leistungsstarken Funktionen zur gleichzeitigen Verarbeitung bevorzugt. Auch im Bereich der Big-Data-Verarbeitung verfügt die Go-Sprache über großes Potenzial. Sie kann zur Verarbeitung großer Datenmengen, zur Leistungsoptimierung und zur guten Integration in verschiedene Big-Data-Verarbeitungstools und Frameworks eingesetzt werden. In diesem Artikel stellen wir einige grundlegende Konzepte und Techniken der Big-Data-Verarbeitung in der Go-Sprache vor und zeigen anhand spezifischer Codebeispiele, wie die Go-Sprache verwendet wird.

Bei der Verarbeitung großer Datenmengen kann die Verwendung einer In-Memory-Datenbank (z. B. Aerospike) die Leistung von C++-Anwendungen verbessern, da sie Daten im Computerspeicher speichert, wodurch Festplatten-E/A-Engpässe vermieden und die Datenzugriffsgeschwindigkeiten erheblich erhöht werden. Praxisbeispiele zeigen, dass die Abfragegeschwindigkeit bei Verwendung einer In-Memory-Datenbank um mehrere Größenordnungen schneller ist als bei Verwendung einer Festplattendatenbank.