PHP入门基础之引用文件学习笔记
引用文件在php中与asp中引用文件有一定区别,下面我来介绍在php中利用require 与include引用文件实例吧。
引用文件是PHP在一大特特色之一,这个方法可以将常用的功能与函数放在一个文件之中,而其他页面需要用到这些功能或函数时,就直接通过引用这个文件来调用这些函数了,如果不引用的话,重新在那个页面上写上相同的函数会大大的加重开发者的工作量,也加大了程序的代码量,不利于后期的维护以及二次开发。
PHP引用文件的方法有两个,分别利用到的函数是 require() 和 include(),两种引用的效果是一样的,但这两个函数有不同之处:如果 require 引用文件时不反回任何值,出错就致命的错误,程序将终止继续执行;使用该函数进行引用时,你要确保代码都是正确的情况下使用,而当 include 引用文件时有反回值,出错时它仍继续执行后面代码,所以建议大家尽量使用第一个函数 require 来引用文件,它没有值反回,速度和效率上相对比 include 要快,而通常 require 会放在PHP程序的最前面,PHP 程序在执行前,就会先读入 require 所指定引入的文件,使它变成 PHP 程序网页的一部份,常用的函数,亦可以这个方法将它引入网页中。
实例代码如下:
<?php require('sql.php'); // 该函数通常放在开头,例如:引用SQL数据库连接函数的文件 echo '引用文件示范'; include('hello-world.php'); // 该函数一般是放在流程控制的处理部分中 ?>
这时有人可能就会问,当某个页面引用多个文件时,而这些被引用的文件也都引用了其它一个或多个相同的文件,有时侯没必要引用那么多次,那么怎样才让PHP只引用一次就行了呢?当然,PHP也有对应的方法的,就是在原函数的基础上加上个“后缀”一样的声明,就是把函数分别变为 require_once()和 include_once(),如下示例:
<?php require_once('sql.php'); // 声明只引用sql.php文件一次 echo '引用文件示范'; include_once('hello-world.php'); //声明只引用hello-world.php文件一次 ?>
本文地址:
转载随意,但请附上文章地址:-)

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Diffusion kann nicht nur besser imitieren, sondern auch „erschaffen“. Das Diffusionsmodell (DiffusionModel) ist ein Bilderzeugungsmodell. Im Vergleich zu bekannten Algorithmen wie GAN und VAE im Bereich der KI verfolgt das Diffusionsmodell einen anderen Ansatz. Seine Hauptidee besteht darin, dem Bild zunächst Rauschen hinzuzufügen und es dann schrittweise zu entrauschen. Das Entrauschen und Wiederherstellen des Originalbilds ist der Kernbestandteil des Algorithmus. Der endgültige Algorithmus ist in der Lage, aus einem zufälligen verrauschten Bild ein Bild zu erzeugen. In den letzten Jahren hat das phänomenale Wachstum der generativen KI viele spannende Anwendungen in der Text-zu-Bild-Generierung, Videogenerierung und mehr ermöglicht. Das Grundprinzip dieser generativen Werkzeuge ist das Konzept der Diffusion, ein spezieller Sampling-Mechanismus, der die Einschränkungen bisheriger Methoden überwindet.

Kimi: In nur einem Satz, in nur zehn Sekunden ist ein PPT fertig. PPT ist so nervig! Um ein Meeting abzuhalten, benötigen Sie einen PPT; um einen wöchentlichen Bericht zu schreiben, müssen Sie einen PPT vorlegen, auch wenn Sie jemanden des Betrugs beschuldigen PPT. Das College ähnelt eher dem Studium eines PPT-Hauptfachs. Man schaut sich PPT im Unterricht an und macht PPT nach dem Unterricht. Als Dennis Austin vor 37 Jahren PPT erfand, hatte er vielleicht nicht damit gerechnet, dass PPT eines Tages so weit verbreitet sein würde. Wenn wir über unsere harte Erfahrung bei der Erstellung von PPT sprechen, treiben uns Tränen in die Augen. „Es dauerte drei Monate, ein PPT mit mehr als 20 Seiten zu erstellen, und ich habe es Dutzende Male überarbeitet. Als ich das PPT sah, musste ich mich übergeben.“ war PPT.“ Wenn Sie ein spontanes Meeting haben, sollten Sie es tun

Am frühen Morgen des 20. Juni (Pekinger Zeit) gab CVPR2024, die wichtigste internationale Computer-Vision-Konferenz in Seattle, offiziell die besten Beiträge und andere Auszeichnungen bekannt. In diesem Jahr wurden insgesamt 10 Arbeiten ausgezeichnet, darunter zwei beste Arbeiten und zwei beste studentische Arbeiten. Darüber hinaus gab es zwei Nominierungen für die beste Arbeit und vier Nominierungen für die beste studentische Arbeit. Die Top-Konferenz im Bereich Computer Vision (CV) ist die CVPR, die jedes Jahr zahlreiche Forschungseinrichtungen und Universitäten anzieht. Laut Statistik wurden in diesem Jahr insgesamt 11.532 Arbeiten eingereicht, von denen 2.719 angenommen wurden, was einer Annahmequote von 23,6 % entspricht. Laut der statistischen Analyse der CVPR2024-Daten des Georgia Institute of Technology befassen sich die meisten Arbeiten aus Sicht der Forschungsthemen mit der Bild- und Videosynthese und -generierung (Imageandvideosyn

Wir wissen, dass LLM auf großen Computerclustern unter Verwendung umfangreicher Daten trainiert wird. Auf dieser Website wurden viele Methoden und Technologien vorgestellt, die den LLM-Trainingsprozess unterstützen und verbessern. Was wir heute teilen möchten, ist ein Artikel, der tief in die zugrunde liegende Technologie eintaucht und vorstellt, wie man einen Haufen „Bare-Metals“ ohne Betriebssystem in einen Computercluster für das LLM-Training verwandelt. Dieser Artikel stammt von Imbue, einem KI-Startup, das allgemeine Intelligenz durch das Verständnis der Denkweise von Maschinen erreichen möchte. Natürlich ist es kein einfacher Prozess, einen Haufen „Bare Metal“ ohne Betriebssystem in einen Computercluster für das Training von LLM zu verwandeln, aber Imbue hat schließlich erfolgreich ein LLM mit 70 Milliarden Parametern trainiert der Prozess akkumuliert

Herausgeber des Machine Power Report: Yang Wen Die Welle der künstlichen Intelligenz, repräsentiert durch große Modelle und AIGC, hat unsere Lebens- und Arbeitsweise still und leise verändert, aber die meisten Menschen wissen immer noch nicht, wie sie sie nutzen sollen. Aus diesem Grund haben wir die Kolumne „KI im Einsatz“ ins Leben gerufen, um detailliert vorzustellen, wie KI durch intuitive, interessante und prägnante Anwendungsfälle für künstliche Intelligenz genutzt werden kann, und um das Denken aller anzuregen. Wir heißen Leser auch willkommen, innovative, praktische Anwendungsfälle einzureichen. Videolink: https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ Vor kurzem wurde der Lebens-Vlog eines allein lebenden Mädchens auf Xiaohongshu populär. Eine Animation im Illustrationsstil, gepaart mit ein paar heilenden Worten, kann in nur wenigen Tagen leicht erlernt werden.

Als weit verbreitete Programmiersprache ist die C-Sprache eine der grundlegenden Sprachen, die für diejenigen erlernt werden müssen, die sich mit Computerprogrammierung befassen möchten. Für Anfänger kann das Erlernen einer neuen Programmiersprache jedoch etwas schwierig sein, insbesondere aufgrund des Mangels an entsprechenden Lernwerkzeugen und Lehrmaterialien. In diesem Artikel werde ich fünf Programmiersoftware vorstellen, die Anfängern den Einstieg in die C-Sprache erleichtert und Ihnen einen schnellen Einstieg ermöglicht. Die erste Programmiersoftware war Code::Blocks. Code::Blocks ist eine kostenlose integrierte Open-Source-Entwicklungsumgebung (IDE) für

Titel: Ein Muss für technische Anfänger: Schwierigkeitsanalyse der C-Sprache und Python, die spezifische Codebeispiele erfordert. Im heutigen digitalen Zeitalter ist Programmiertechnologie zu einer immer wichtigeren Fähigkeit geworden. Ob Sie in Bereichen wie Softwareentwicklung, Datenanalyse, künstliche Intelligenz arbeiten oder einfach nur aus Interesse Programmieren lernen möchten, die Wahl einer geeigneten Programmiersprache ist der erste Schritt. Unter vielen Programmiersprachen sind C-Sprache und Python zwei weit verbreitete Programmiersprachen, jede mit ihren eigenen Merkmalen. In diesem Artikel werden die Schwierigkeitsgrade der C-Sprache und von Python analysiert

Retrieval-Augmented Generation (RAG) ist eine Technik, die Retrieval nutzt, um Sprachmodelle zu verbessern. Bevor ein Sprachmodell eine Antwort generiert, ruft es insbesondere relevante Informationen aus einer umfangreichen Dokumentendatenbank ab und verwendet diese Informationen dann zur Steuerung des Generierungsprozesses. Diese Technologie kann die Genauigkeit und Relevanz von Inhalten erheblich verbessern, das Problem der Halluzinationen wirksam lindern, die Geschwindigkeit der Wissensaktualisierung erhöhen und die Nachverfolgbarkeit der Inhaltsgenerierung verbessern. RAG ist zweifellos einer der spannendsten Bereiche der Forschung im Bereich der künstlichen Intelligenz. Weitere Informationen zu RAG finden Sie im Kolumnenartikel auf dieser Website „Was sind die neuen Entwicklungen bei RAG, das sich darauf spezialisiert hat, die Mängel großer Modelle auszugleichen?“ Diese Rezension erklärt es deutlich. Aber RAG ist nicht perfekt und Benutzer stoßen bei der Verwendung oft auf einige „Problempunkte“. Kürzlich die fortschrittliche generative KI-Lösung von NVIDIA
