

Welche Arten von Dateninkonsistenzen können bei gleichzeitigen Vorgängen auftreten?
Dateninkonsistenzen, die durch gleichzeitige Vorgänge verursacht werden, umfassen drei Kategorien: verlorene Änderungen, nicht wiederholbare Lesevorgänge und das Lesen „schmutziger“ Daten. Die Methode und Technologie zur Vermeidung von Inkonsistenzen ist die Blockierungstechnologie. In verteilten Datenbanksystemen kann beispielsweise auch die Zeitstempelmethode verwendet werden.
Dateninkonsistenzen, die durch gleichzeitige Vorgänge verursacht werden, umfassen drei Kategorien: verlorene Änderungen, nicht wiederholbare Lesevorgänge und das Lesen „schmutziger“ Daten.
1. Verlorene Aktualisierung
Zwei Transaktionen T1 und T2 lesen die gleichen Daten und ändern sie. Das von T2 übermittelte Ergebnis zerstört (überschreibt) und führt dazu, dass die Änderung von T1 verloren geht.
2. Nicht wiederholbares Lesen
Nicht wiederholbares Lesen bedeutet, dass Transaktion T2 nach dem Lesen der Daten einen Aktualisierungsvorgang ausführt, sodass T1 das vorherige Leseergebnis nicht reproduzieren kann.
3. Dirty Read
Das Lesen von „Dirty“-Daten bedeutet, dass Transaktion T1 bestimmte Daten ändert und sie aus einem bestimmten Grund wieder auf die Festplatte schreibt Wird widerrufen, werden die geänderten Daten von T1 auf ihren ursprünglichen Wert zurückgesetzt und die von T2 gelesenen Daten stimmen nicht mit den Daten in der Datenbank überein, sodass es sich bei den von T2 gelesenen Daten um „schmutzige“ Daten, also falsche Daten, handelt .
Mit welchen Methoden können verschiedene Inkonsistenzen vermieden werden?
Die Methode und Technologie zur Vermeidung von Inkonsistenzen ist die Blockierungstechnologie. In verteilten Datenbanksystemen kann beispielsweise auch die Zeitstempelmethode verwendet werden.
Weitere Informationen zu diesem Thema finden Sie auf: Chinesische PHP-Website!
Das obige ist der detaillierte Inhalt vonWelche Arten von Dateninkonsistenzen können bei gleichzeitigen Vorgängen auftreten?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Parallelitäts- und Multithreading-Techniken mithilfe von Java-Funktionen können die Anwendungsleistung verbessern, einschließlich der folgenden Schritte: Parallelitäts- und Multithreading-Konzepte verstehen. Nutzen Sie die Parallelitäts- und Multithreading-Bibliotheken von Java wie ExecutorService und Callable. Üben Sie Fälle wie die Multithread-Matrixmultiplikation, um die Ausführungszeit erheblich zu verkürzen. Genießen Sie die Vorteile einer erhöhten Reaktionsgeschwindigkeit der Anwendung und einer optimierten Verarbeitungseffizienz durch Parallelität und Multithreading.

Parallelität und Coroutinen werden im GoAPI-Design für Folgendes verwendet: Hochleistungsverarbeitung: Mehrere Anfragen gleichzeitig verarbeiten, um die Leistung zu verbessern. Asynchrone Verarbeitung: Verwenden Sie Coroutinen, um Aufgaben (z. B. das Senden von E-Mails) asynchron zu verarbeiten und den Hauptthread freizugeben. Stream-Verarbeitung: Verwenden Sie Coroutinen, um Datenströme (z. B. Datenbanklesevorgänge) effizient zu verarbeiten.

Transaktionen gewährleisten die Integrität der Datenbankdaten, einschließlich Atomizität, Konsistenz, Isolation und Haltbarkeit. JDBC verwendet die Verbindungsschnittstelle, um die Transaktionssteuerung bereitzustellen (setAutoCommit, Commit, Rollback). Parallelitätskontrollmechanismen koordinieren gleichzeitige Vorgänge mithilfe von Sperren oder optimistischer/pessimistischer Parallelitätskontrolle, um eine Transaktionsisolation zu erreichen und Dateninkonsistenzen zu verhindern.

Das Testen gleichzeitiger Funktionen in Einheiten ist von entscheidender Bedeutung, da dies dazu beiträgt, ihr korrektes Verhalten in einer gleichzeitigen Umgebung sicherzustellen. Beim Testen gleichzeitiger Funktionen müssen grundlegende Prinzipien wie gegenseitiger Ausschluss, Synchronisation und Isolation berücksichtigt werden. Gleichzeitige Funktionen können Unit-Tests unterzogen werden, indem Rennbedingungen simuliert, getestet und Ergebnisse überprüft werden.

Funktionen und Features der Go-Sprache Go-Sprache, auch bekannt als Golang, ist eine von Google entwickelte Open-Source-Programmiersprache. Sie wurde ursprünglich entwickelt, um die Programmiereffizienz und Wartbarkeit zu verbessern. Seit ihrer Geburt hat die Go-Sprache ihren einzigartigen Charme im Bereich der Programmierung gezeigt und große Aufmerksamkeit und Anerkennung erhalten. Dieser Artikel befasst sich mit den Funktionen und Merkmalen der Go-Sprache und demonstriert ihre Leistungsfähigkeit anhand spezifischer Codebeispiele. Native Parallelitätsunterstützung Die Go-Sprache unterstützt von Natur aus die gleichzeitige Programmierung, die über die Goroutine- und Kanalmechanismen implementiert wird.

Atomare Klassen sind threadsichere Klassen in Java, die unterbrechungsfreie Vorgänge ermöglichen und für die Gewährleistung der Datenintegrität in gleichzeitigen Umgebungen von entscheidender Bedeutung sind. Java stellt die folgenden atomaren Klassen bereit: AtomicIntegerAtomicLongAtomicReferenceAtomicBoolean Diese Klassen stellen Methoden zum Abrufen, Festlegen und Vergleichen von Werten bereit, um sicherzustellen, dass der Vorgang atomar ist und nicht durch Threads unterbrochen wird. Atomare Klassen sind nützlich, wenn Sie mit gemeinsam genutzten Daten arbeiten und Datenbeschädigungen verhindern, z. B. bei der Verwaltung gemeinsam genutzter Zähler für den gleichzeitigen Zugriff.

Die Java-Parallelitätsbibliothek bietet eine Vielzahl von Tools, darunter: Thread-Pool: Wird zum Verwalten von Threads und zur Verbesserung der Effizienz verwendet. Sperre: Wird zum Synchronisieren des Zugriffs auf gemeinsam genutzte Ressourcen verwendet. Barriere: Wird verwendet, um darauf zu warten, dass alle Threads einen bestimmten Punkt erreichen. Atomare Operationen: unteilbare Einheiten, die die Thread-Sicherheit gewährleisten. Gleichzeitige Warteschlange: Eine Thread-sichere Warteschlange, die den gleichzeitigen Betrieb mehrerer Threads ermöglicht.

Deadlock-Probleme in Multithread-Umgebungen können verhindert werden, indem eine feste Sperrreihenfolge definiert und Sperren nacheinander erworben werden. Legen Sie einen Timeout-Mechanismus fest, um das Warten abzubrechen, wenn die Sperre nicht innerhalb der angegebenen Zeit erhalten werden kann. Verwenden Sie den Deadlock-Erkennungsalgorithmus, um den Thread-Deadlock-Status zu erkennen und Wiederherstellungsmaßnahmen zu ergreifen. In der Praxis definiert das Ressourcenverwaltungssystem eine globale Sperrreihenfolge für alle Ressourcen und zwingt Threads, die erforderlichen Sperren zu erwerben, um Deadlocks zu vermeiden.