Parsen des zugrunde liegenden PHP8-Kernel-Quellcodes – Array (4)
Dieser Artikel stellt Ihnen „Analyse des zugrunde liegenden PHP8-Kernel-Quellcodes – Array (4)“ vor. Es hat einen gewissen Referenzwert. Freunde in Not können sich darauf beziehen. Ich hoffe, es wird für alle hilfreich sein.
Empfohlene verwandte Artikel: „Analyse des PHP8 zugrunde liegenden Kernel-Quellcodes – Array (1)“ „Analyse des PHP8 zugrunde liegenden Kernel-Quellcodes – Array (2)“ „Analyse des PHP8 zugrunde liegenden Kernel-Quellcodes – Array ( 3)"
In Runningprocess wissen wir bereits, dass der Code eine lexikalische Analyse, Syntaxanalyse, Kompilierung und Ausführung von vier Hauptschritten durchlaufen muss
PHP 8 befindet sich in der Kompilierungsphase (wenn der abstrakte AST-Syntaxbaum in Opcode kompiliert wird) und erstellt eine Array-Konstante. Diese Array-Konstante wird, ebenso wie numerische Konstanten und String-Konstanten, während der Kompilierungsphase bestimmt und Speicher zugewiesen. Die Initialisierung des Arrays erfolgt also während der Kompilierungsphase.
Der Array-Initialisierungscodeteil von PHP lautet wie folgt:
//如果开启zend_debug #if !ZEND_DEBUG && defined(HAVE_BUILTIN_CONSTANT_P) # define zend_new_array(size) \ (__builtin_constant_p(size) ? \ ((((uint32_t)(size)) <= HT_MIN_SIZE) ? \ _zend_new_array_0() \ //走 _zend_new_array_0 : \ _zend_new_array((size)) \ ) \ : \ _zend_new_array((size)) \ ) #else //没有开启 也就是一般模式 走 _zend_new_array # define zend_new_array(size) \ _zend_new_array(size) #endif ZEND_API void ZEND_FASTCALL _zend_hash_init(HashTable *ht, uint32_t nSize, dtor_func_t pDestructor, zend_bool persistent) { _zend_hash_init_int(ht, nSize, pDestructor, persistent); } ZEND_API HashTable* ZEND_FASTCALL _zend_new_array_0(void) { //分配内存空间 HashTable *ht = emalloc(sizeof(HashTable)); //初始化 _zend_hash_init_int(ht, HT_MIN_SIZE, ZVAL_PTR_DTOR, 0); return ht; } //初始化方法 static zend_always_inline void _zend_hash_init_int(HashTable *ht, uint32_t nSize, dtor_func_t pDestructor, zend_bool persistent) { GC_SET_REFCOUNT(ht, 1); GC_TYPE_INFO(ht) = GC_ARRAY | (persistent ? ((GC_PERSISTENT|GC_NOT_COLLECTABLE) << GC_FLAGS_SHIFT) : 0); HT_FLAGS(ht) = HASH_FLAG_UNINITIALIZED; ht->nTableMask = HT_MIN_MASK; HT_SET_DATA_ADDR(ht, &uninitialized_bucket); ht->nNumUsed = 0; ht->nNumOfElements = 0; ht->nInternalPointer = 0; ht->nNextFreeElement = ZEND_LONG_MIN; ht->pDestructor = pDestructor; ht->nTableSize = zend_hash_check_size(nSize); } //初始化 bucket 也就是 ardata ZEND_API void ZEND_FASTCALL zend_hash_real_init(HashTable *ht, zend_bool packed) { IS_CONSISTENT(ht); HT_ASSERT_RC1(ht); //调用 zend_hash_real_init_ex方法 zend_hash_real_init_ex(ht, packed); } //zend_hash_real_init_ex方法 static zend_always_inline void zend_hash_real_init_ex(HashTable *ht, bool packed) { HT_ASSERT_RC1(ht); ZEND_ASSERT(HT_FLAGS(ht) & HASH_FLAG_UNINITIALIZED); if (packed) { //如果是packed_array zend_hash_real_init_packed_ex(ht); } else { //如果是 hash_array zend_hash_real_init_mixed_ex(ht); } } //paced_array 初始化bucket 的代码 static zend_always_inline void zend_hash_real_init_packed_ex(HashTable *ht) { void *data; if (UNEXPECTED(GC_FLAGS(ht) & IS_ARRAY_PERSISTENT)) { data = pemalloc(HT_SIZE_EX(ht->nTableSize, HT_MIN_MASK), 1); } else if (EXPECTED(ht->nTableSize == HT_MIN_SIZE)) { data = emalloc(HT_SIZE_EX(HT_MIN_SIZE, HT_MIN_MASK)); } else { data = emalloc(HT_SIZE_EX(ht->nTableSize, HT_MIN_MASK)); } HT_SET_DATA_ADDR(ht, data); /* Don't overwrite iterator count. */ ht->u.v.flags = HASH_FLAG_PACKED | HASH_FLAG_STATIC_KEYS; HT_HASH_RESET_PACKED(ht); } //hash_array 初始化bucket的代码 static zend_always_inline void zend_hash_real_init_mixed_ex(HashTable *ht) { void *data; uint32_t nSize = ht->nTableSize; if (UNEXPECTED(GC_FLAGS(ht) & IS_ARRAY_PERSISTENT)) { data = pemalloc(HT_SIZE_EX(nSize, HT_SIZE_TO_MASK(nSize)), 1); } else if (EXPECTED(nSize == HT_MIN_SIZE)) { data = emalloc(HT_SIZE_EX(HT_MIN_SIZE, HT_SIZE_TO_MASK(HT_MIN_SIZE))); ht->nTableMask = HT_SIZE_TO_MASK(HT_MIN_SIZE); HT_SET_DATA_ADDR(ht, data); /* Don't overwrite iterator count. */ ht->u.v.flags = HASH_FLAG_STATIC_KEYS; #ifdef __SSE2__ do { __m128i xmm0 = _mm_setzero_si128(); xmm0 = _mm_cmpeq_epi8(xmm0, xmm0); _mm_storeu_si128((__m128i*)&HT_HASH_EX(data, 0), xmm0); _mm_storeu_si128((__m128i*)&HT_HASH_EX(data, 4), xmm0); _mm_storeu_si128((__m128i*)&HT_HASH_EX(data, 8), xmm0); _mm_storeu_si128((__m128i*)&HT_HASH_EX(data, 12), xmm0); } while (0); #elif defined(__aarch64__) do { int32x4_t t = vdupq_n_s32(-1); vst1q_s32((int32_t*)&HT_HASH_EX(data, 0), t); vst1q_s32((int32_t*)&HT_HASH_EX(data, 4), t); vst1q_s32((int32_t*)&HT_HASH_EX(data, 8), t); vst1q_s32((int32_t*)&HT_HASH_EX(data, 12), t); } while (0); #else HT_HASH_EX(data, 0) = -1; HT_HASH_EX(data, 1) = -1; HT_HASH_EX(data, 2) = -1; HT_HASH_EX(data, 3) = -1; HT_HASH_EX(data, 4) = -1; HT_HASH_EX(data, 5) = -1; HT_HASH_EX(data, 6) = -1; HT_HASH_EX(data, 7) = -1; HT_HASH_EX(data, 8) = -1; HT_HASH_EX(data, 9) = -1; HT_HASH_EX(data, 10) = -1; HT_HASH_EX(data, 11) = -1; HT_HASH_EX(data, 12) = -1; HT_HASH_EX(data, 13) = -1; HT_HASH_EX(data, 14) = -1; HT_HASH_EX(data, 15) = -1; #endif return; } else { data = emalloc(HT_SIZE_EX(nSize, HT_SIZE_TO_MASK(nSize))); } ht->nTableMask = HT_SIZE_TO_MASK(nSize); HT_SET_DATA_ADDR(ht, data); HT_FLAGS(ht) = HASH_FLAG_STATIC_KEYS; HT_HASH_RESET(ht); } //数组赋值和更新值 static zend_always_inline zval *_zend_hash_index_add_or_update_i(HashTable *ht, zend_ulong h, zval *pData, uint32_t flag) { uint32_t nIndex; uint32_t idx; Bucket *p; IS_CONSISTENT(ht); HT_ASSERT_RC1(ht); if ((flag & HASH_ADD_NEXT) && h == ZEND_LONG_MIN) { h = 0; } if (HT_FLAGS(ht) & HASH_FLAG_PACKED) { if (h < ht->nNumUsed) { p = ht->arData + h; if (Z_TYPE(p->val) != IS_UNDEF) { replace: if (flag & HASH_ADD) { return NULL; } if (ht->pDestructor) { ht->pDestructor(&p->val); } ZVAL_COPY_VALUE(&p->val, pData); return &p->val; } else { /* we have to keep the order :( */ goto convert_to_hash; } } else if (EXPECTED(h < ht->nTableSize)) { add_to_packed: p = ht->arData + h; /* incremental initialization of empty Buckets */ if ((flag & (HASH_ADD_NEW|HASH_ADD_NEXT)) != (HASH_ADD_NEW|HASH_ADD_NEXT)) { if (h > ht->nNumUsed) { Bucket *q = ht->arData + ht->nNumUsed; while (q != p) { ZVAL_UNDEF(&q->val); q++; } } } ht->nNextFreeElement = ht->nNumUsed = h + 1; goto add; } else if ((h >> 1) < ht->nTableSize && (ht->nTableSize >> 1) < ht->nNumOfElements) { zend_hash_packed_grow(ht); goto add_to_packed; } else { if (ht->nNumUsed >= ht->nTableSize) { ht->nTableSize += ht->nTableSize; } convert_to_hash: zend_hash_packed_to_hash(ht); } } else if (HT_FLAGS(ht) & HASH_FLAG_UNINITIALIZED) { if (h < ht->nTableSize) { zend_hash_real_init_packed_ex(ht); goto add_to_packed; } zend_hash_real_init_mixed(ht); } else { if ((flag & HASH_ADD_NEW) == 0 || ZEND_DEBUG) { p = zend_hash_index_find_bucket(ht, h); if (p) { ZEND_ASSERT((flag & HASH_ADD_NEW) == 0); goto replace; } } ZEND_HASH_IF_FULL_DO_RESIZE(ht);/* If the Hash table is full, resize it */ } idx = ht->nNumUsed++; nIndex = h | ht->nTableMask; p = ht->arData + idx; Z_NEXT(p->val) = HT_HASH(ht, nIndex); HT_HASH(ht, nIndex) = HT_IDX_TO_HASH(idx); if ((zend_long)h >= ht->nNextFreeElement) { ht->nNextFreeElement = (zend_long)h < ZEND_LONG_MAX ? h + 1 : ZEND_LONG_MAX; } add: ht->nNumOfElements++; p->h = h; p->key = NULL; ZVAL_COPY_VALUE(&p->val, pData); return &p->val; }
_zend_hash_init_int Das Flussdiagramm lautet wie folgt: Flussdiagramm der Methode_zend_hash_init_int (Initialisierungs-Hash)


Schritt 2: Jedes Feld der HashTable-Struktur initialisieren

zend_hash_real_init_packed_ex (Bucket-Initialisierungsflussdiagramm, wenn gepacktes_Array)


Das obige ist der detaillierte Inhalt vonParsen des zugrunde liegenden PHP8-Kernel-Quellcodes – Array (4). Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Die Methode zur Verwendung einer foreach-Schleife zum Entfernen doppelter Elemente aus einem PHP-Array ist wie folgt: Durchlaufen Sie das Array und löschen Sie es, wenn das Element bereits vorhanden ist und die aktuelle Position nicht das erste Vorkommen ist. Wenn beispielsweise in den Datenbankabfrageergebnissen doppelte Datensätze vorhanden sind, können Sie diese Methode verwenden, um diese zu entfernen und Ergebnisse ohne doppelte Datensätze zu erhalten.

Zu den Methoden zum tiefen Kopieren von Arrays in PHP gehören: JSON-Kodierung und -Dekodierung mit json_decode und json_encode. Verwenden Sie array_map und clone, um tiefe Kopien von Schlüsseln und Werten zu erstellen. Verwenden Sie Serialize und Deserialize für die Serialisierung und Deserialisierung.

Der Leistungsvergleich der PHP-Methoden zum Umdrehen von Array-Schlüsselwerten zeigt, dass die Funktion array_flip() in großen Arrays (mehr als 1 Million Elemente) eine bessere Leistung als die for-Schleife erbringt und weniger Zeit benötigt. Die for-Schleifenmethode zum manuellen Umdrehen von Schlüsselwerten dauert relativ lange.

Die PHP-Funktion array_group_by kann Elemente in einem Array basierend auf Schlüsseln oder Abschlussfunktionen gruppieren und ein assoziatives Array zurückgeben, wobei der Schlüssel der Gruppenname und der Wert ein Array von Elementen ist, die zur Gruppe gehören.

Die beste Vorgehensweise zum Durchführen einer Array-Deep-Kopie in PHP besteht darin, json_decode(json_encode($arr)) zu verwenden, um das Array in einen JSON-String zu konvertieren und ihn dann wieder in ein Array umzuwandeln. Verwenden Sie unserialize(serialize($arr)), um das Array in eine Zeichenfolge zu serialisieren und es dann in ein neues Array zu deserialisieren. Verwenden Sie den RecursiveIteratorIterator, um mehrdimensionale Arrays rekursiv zu durchlaufen.

Die mehrdimensionale Array-Sortierung kann in Einzelspaltensortierung und verschachtelte Sortierung unterteilt werden. Bei der Einzelspaltensortierung kann die Funktion array_multisort() zum Sortieren nach Spalten verwendet werden. Bei der verschachtelten Sortierung ist eine rekursive Funktion erforderlich, um das Array zu durchlaufen und zu sortieren. Zu den praktischen Beispielen gehören die Sortierung nach Produktname und die Sortierung von Verbindungen nach Verkaufsmenge und Preis.

Der PHP-Algorithmus zum Zusammenführen und Deduplizieren von Arrays bietet eine parallele Lösung, indem er das ursprüngliche Array zur parallelen Verarbeitung in kleine Blöcke aufteilt und der Hauptprozess die Ergebnisse der zu deduplizierenden Blöcke zusammenführt. Algorithmusschritte: Teilen Sie das ursprüngliche Array in gleichmäßig verteilte kleine Blöcke auf. Verarbeiten Sie jeden Block zur Deduplizierung parallel. Blockergebnisse zusammenführen und erneut deduplizieren.

Mit der Funktion array_group() von PHP kann ein Array nach einem angegebenen Schlüssel gruppiert werden, um doppelte Elemente zu finden. Diese Funktion durchläuft die folgenden Schritte: Verwenden Sie key_callback, um den Gruppierungsschlüssel anzugeben. Verwenden Sie optional value_callback, um Gruppierungswerte zu bestimmen. Zählen Sie gruppierte Elemente und identifizieren Sie Duplikate. Daher ist die Funktion array_group() sehr nützlich, um doppelte Elemente zu finden und zu verarbeiten.
