Was ist der Unterschied zwischen OpenStack und Docker?
Unterschiede: 1. OpenStack ist ein Tool zur Verwaltung von IT-Ressourcen, während Docker eine Anwendungscontainer-Engine ist. 2. OpenStack ist etwas in der IaaS-Ebene und Docker ist etwas, das IaaS und PaaS umfasst OpenStack ist groß, während Docker nur wenig Platz einnimmt.
Die Betriebsumgebung dieses Tutorials: Linux5.9.8-System, Docker-1.13.1-Version, Dell G3-Computer.
OpenStack
ist ein Tool zur Verwaltung von IT-Ressourcen. Der Unterschied zu den Desktop-Versionen von VirtualBox und VMware besteht darin, dass diese Software nur virtuelle Maschinen auf ihrer eigenen Maschine verwalten kann, während OpenStack virtuelle Maschinen auf einer Reihe von Servern verwalten kann.
Docker
Eine Open-Source-Anwendungscontainer-Engine. Jede virtuelle Maschine von Docker ist tatsächlich ein Prozess im Host-Betriebssystem. Entwickler können ihre eigenen Anwendungen in Container packen und sie dann zu Docker-Anwendungen auf anderen Maschinen migrieren, was eine schnelle Bereitstellung ermöglicht.
Unterschied
OpenStack ist eine Sache der IaaS-Ebene, es integriert eine Reihe von Servern und erstellt und verwaltet dann frei viele virtuelle Maschinen auf diesen Servern. Natürlich möchten Sie noch nicht die CPUs mehrerer Server zu einer leistungsstärkeren virtuellen Maschine zusammenfassen.
Docker und Docker-basierter Schwarm bzw. Kubernetes wollen in puncto Virtualisierung grundsätzlich das Gleiche tun wie Openstack, verbrauchen aber weniger Hardware-Ressourcen als virtuelle Maschinen wie kvm. Aber er hat auch einige Bereitstellungsstandardisierungen vorgenommen, sodass Docker etwas ist, das IaaS und PaaS umfasst, oder die ursprüngliche strikte Schichtung von IaaS und PaaS durchbricht, was diese Begriffe oder die Leute, die diese Begriffe sagen, einschließlich mir, etwas chaotisch macht. Aber es ist so einfach und effektiv.
Empfohlenes Lernen: „Docker-Video-Tutorial“
Das obige ist der detaillierte Inhalt vonWas ist der Unterschied zwischen OpenStack und Docker?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Es gibt vier Möglichkeiten, ein Projekt in PyCharm zu verpacken: Als separate ausführbare Datei verpacken: In das EXE-Einzeldateiformat exportieren. Als Installationsprogramm verpackt: Setuptools-Makefile generieren und erstellen. Als Docker-Image verpacken: Geben Sie einen Image-Namen an, passen Sie die Build-Optionen an und erstellen Sie. Als Container verpacken: Geben Sie das zu erstellende Image an, passen Sie die Laufzeitoptionen an und starten Sie den Container.

Übersicht LLaMA-3 (LargeLanguageModelMetaAI3) ist ein groß angelegtes Open-Source-Modell für generative künstliche Intelligenz, das von Meta Company entwickelt wurde. Im Vergleich zur Vorgängergeneration LLaMA-2 gibt es keine wesentlichen Änderungen in der Modellstruktur. Das LLaMA-3-Modell ist in verschiedene Maßstabsversionen unterteilt, darunter kleine, mittlere und große, um unterschiedlichen Anwendungsanforderungen und Rechenressourcen gerecht zu werden. Die Parametergröße kleiner Modelle beträgt 8 B, die Parametergröße mittlerer Modelle beträgt 70 B und die Parametergröße großer Modelle erreicht 400 B. Beim Training besteht das Ziel jedoch darin, multimodale und mehrsprachige Funktionalität zu erreichen, und die Ergebnisse werden voraussichtlich mit GPT4/GPT4V vergleichbar sein. Ollama installierenOllama ist ein Open-Source-Großsprachenmodell (LL

Die verteilte PHP-Systemarchitektur erreicht Skalierbarkeit, Leistung und Fehlertoleranz durch die Verteilung verschiedener Komponenten auf mit dem Netzwerk verbundene Maschinen. Die Architektur umfasst Anwendungsserver, Nachrichtenwarteschlangen, Datenbanken, Caches und Load Balancer. Zu den Schritten zur Migration von PHP-Anwendungen auf eine verteilte Architektur gehören: Identifizieren von Dienstgrenzen, Auswählen eines Nachrichtenwarteschlangensystems, Einführung eines Microservices-Frameworks, Bereitstellung für die Containerverwaltung, Diensterkennung

Detaillierte Erläuterungs- und Installationshandbuch für Pinetwork -Knoten In diesem Artikel wird das Pinetwork -Ökosystem im Detail vorgestellt - PI -Knoten, eine Schlüsselrolle im Pinetwork -Ökosystem und vollständige Schritte für die Installation und Konfiguration. Nach dem Start des Pinetwork -Blockchain -Testnetzes sind PI -Knoten zu einem wichtigen Bestandteil vieler Pioniere geworden, die aktiv an den Tests teilnehmen und sich auf die bevorstehende Hauptnetzwerkveröffentlichung vorbereiten. Wenn Sie Pinetwork noch nicht kennen, wenden Sie sich bitte an was Picoin ist? Was ist der Preis für die Auflistung? PI -Nutzung, Bergbau und Sicherheitsanalyse. Was ist Pinetwork? Das Pinetwork -Projekt begann 2019 und besitzt seine exklusive Kryptowährung PI -Münze. Das Projekt zielt darauf ab, eine zu erstellen, an der jeder teilnehmen kann

Antwort: PHP-Microservices werden mit HelmCharts für eine agile Entwicklung bereitgestellt und mit DockerContainer für Isolation und Skalierbarkeit in Containern verpackt. Detaillierte Beschreibung: Verwenden Sie HelmCharts, um PHP-Microservices automatisch bereitzustellen, um eine agile Entwicklung zu erreichen. Docker-Images ermöglichen eine schnelle Iteration und Versionskontrolle von Microservices. Der DockerContainer-Standard isoliert Microservices und Kubernetes verwaltet die Verfügbarkeit und Skalierbarkeit der Container. Verwenden Sie Prometheus und Grafana, um die Leistung und den Zustand von Microservices zu überwachen und Alarme und automatische Reparaturmechanismen zu erstellen.

Es gibt viele Möglichkeiten, Deepseek zu installieren, einschließlich: kompilieren Sie von Quelle (für erfahrene Entwickler) mit vorberechtigten Paketen (für Windows -Benutzer) mit Docker -Containern (für bequem am besten, um die Kompatibilität nicht zu sorgen), unabhängig von der Methode, die Sie auswählen, bitte lesen Die offiziellen Dokumente vorbereiten sie sorgfältig und bereiten sie voll und ganz vor, um unnötige Schwierigkeiten zu vermeiden.

Die Containerisierung verbessert die Leistung von Java-Funktionen auf folgende Weise: Ressourcenisolation – Gewährleistung einer isolierten Computerumgebung und Vermeidung von Ressourcenkonflikten. Leicht – beansprucht weniger Systemressourcen und verbessert die Laufzeitleistung. Schneller Start – reduziert Verzögerungen bei der Funktionsausführung. Konsistenz – Entkoppeln Sie Anwendungen und Infrastruktur, um ein konsistentes Verhalten in allen Umgebungen sicherzustellen.

Stellen Sie Java EE-Anwendungen mithilfe von Docker-Containern bereit: Erstellen Sie eine Docker-Datei, um das Image zu definieren, erstellen Sie das Image, führen Sie den Container aus, ordnen Sie den Port zu und greifen Sie dann im Browser auf die Anwendung zu. Beispiel für eine JavaEE-Anwendung: Die REST-API interagiert mit der Datenbank und ist nach der Bereitstellung über Docker auf localhost zugänglich.
