Dieser Artikel wurde von der golangtutorial-Kolumne geschrieben, um vorzustellen, wie man das Tageslimit des Benutzers in Go implementiert. Ich hoffe, dass er Freunden, die es benötigen, hilfreich sein wird!
Implementieren Sie das Tageslimit des Benutzers in Go (Sie können beispielsweise nur dreimal am Tag Vorteile erhalten)
Wenn Sie ein Fehlerverwaltungssystem schreiben und dieses
PeriodLimit
verwenden, können Sie jeden Tester darauf beschränken, Ihnen nur einen Fehler pro Tag zu übermitteln. Ist die Arbeit viel einfacher? :PPeriodLimit
你就可以限制每个测试人员每天只能给你提一个 bug。工作是不是就轻松很多了?:P
如今微服务架构大行其道本质原因是因为要降低系统的整体复杂度,将系统风险均摊到子系统从而最大化保证系统的稳定性,通过领域划分拆成不同的子系统后各个子系统能独立的开发、测试、发布,研发节奏和效率能明显提高。
但同时也带来了问题,比如:调用链路过长,部署架构复杂度提升,各种中间件需要支持分布式场景。为了确保微服务的正常运行,服务治理就不可或缺了,通常包括:限流,降级,熔断。
其中限流指的是针对接口调用频率进行限制,以免超出承载上限拖垮系统。比如:
电商秒杀场景
API 针对不同商户限流
常用的限流算法有:
本文主要讲解固定时间窗口限流算法。
从某个时间点开始每次请求过来请求数+1,同时判断当前时间窗口内请求数是否超过限制,超过限制则拒绝该请求,然后下个时间窗口开始时计数器清零等待请求。
优点
实现简单高效,特别适合用来限制比如一个用户一天只能发10篇文章、只能发送5次短信验证码、只能尝试登录5次等场景,实际业务中此类场景非常多见。
缺点
固定时间窗口限流的缺点在于无法处理临界区请求突发场景。
假设每 1s 限流 100 次请求,用户在中间 500ms 时开始 1s 内发起 200 次请求,此时 200 次请求是可以全部通过的。这就和我们预期 1s 限流 100 次不合了,根源在于限流的细粒度太粗。
core/limit/periodlimit.go
go-zero 中使用 redis 过期时间来模拟固定时间窗口。
redis lua 脚本:
-- KYES[1]:限流器key-- ARGV[1]:qos,单位时间内最多请求次数-- ARGV[2]:单位限流窗口时间-- 请求最大次数,等于p.quotalocal limit = tonumber(ARGV[1])-- 窗口即一个单位限流周期,这里用过期模拟窗口效果,等于p.permitlocal window = tonumber(ARGV[2])-- 请求次数+1,获取请求总数local current = redis.call("INCRBY",KYES[1],1)-- 如果是第一次请求,则设置过期时间并返回 成功if current == 1 then redis.call("expire",KYES[1],window) return 1-- 如果当前请求数量小于limit则返回 成功elseif current limit则返回 失败else return 0end
固定时间窗口限流器定义
type ( // PeriodOption defines the method to customize a PeriodLimit. // go中常见的option参数模式 // 如果参数非常多,推荐使用此模式来设置参数 PeriodOption func(l *PeriodLimit) // A PeriodLimit is used to limit requests during a period of time. // 固定时间窗口限流器 PeriodLimit struct { // 窗口大小,单位s period int // 请求上限 quota int // 存储 limitStore *redis.Redis // key前缀 keyPrefix string // 线性限流,开启此选项后可以实现周期性的限流 // 比如quota=5时,quota实际值可能会是5.4.3.2.1呈现出周期性变化 align bool } )
注意一下 align 参数,align=true 时请求上限将会呈现周期性的变化。
比如quota=5时实际quota可能是5.4.3.2.1呈现出周期性变化
限流逻辑
其实限流逻辑在上面的 lua 脚本实现了,需要注意的是返回值
// Take requests a permit, it returns the permit state. // 执行限流 // 注意一下返回值: // 0:表示错误,比如可能是redis故障、过载 // 1:允许 // 2:允许但是当前窗口内已到达上限 // 3:拒绝 func (h *PeriodLimit) Take(key string) (int, error) { // 执行lua脚本 resp, err := h.limitStore.Eval(periodScript, []string{h.keyPrefix + key}, []string{ strconv.Itoa(h.quota), strconv.Itoa(h.calcExpireSeconds()), }) if err != nil { return Unknown, err } code, ok := resp.(int64) if !ok { return Unknown, ErrUnknownCode } switch code { case internalOverQuota: return OverQuota, nil case internalAllowed: return Allowed, nil case internalHitQuota: return HitQuota, nil default: return Unknown, ErrUnknownCode } }
这个固定窗口限流可能用来限制比如一个用户一天只能发送5次验证码短信,此时我们就需要跟中国时区对应(GMT+8),并且其实限流时间应该从零点开始,此时我们需要额外对齐(设置 align 为 true)。
// 计算过期时间也就是窗口时间大小 // 如果align==true // 线性限流,开启此选项后可以实现周期性的限流 // 比如quota=5时,quota实际值可能会是5.4.3.2.1呈现出周期性变化 func (h *PeriodLimit) calcExpireSeconds() int { if h.align { now := time.Now() _, offset := now.Zone() unix := now.Unix() + int64(offset) return h.period - int(unix%int64(h.period)) } return h.period }
github.com/zeromicro/go-zero
欢迎使用 go-zero
Der wesentliche Grund, warum Microservice-Architektur heutzutage so beliebt ist, besteht darin, die Gesamtkomplexität des Systems zu reduzieren, Systemrisiken gleichmäßig auf Subsysteme zu verteilen, um die Stabilität des Systems zu maximieren, und es über Domänen in verschiedene Subsysteme aufzuteilen Abteilung Am Ende kann jedes Subsystem unabhängig entwickelt, getestet und freigegeben werden, wodurch der F&E-Rhythmus und die Effizienz erheblich verbessert werden können.
core/limit/periodlimit.go
🎜🎜 Go-Zero nutzt die Redis-Ablaufzeit, um ein festes Zeitfenster zu simulieren. 🎜🎜🎜Redis Lua-Skript: 🎜rrreee🎜🎜Definition des Strombegrenzers für ein festes Zeitfenster🎜rrreee🎜Achten Sie auf den Align-Parameter. Wenn align=true, ändert sich die Obergrenze der Anforderung regelmäßig. go-zero
und 🎜star🎜 unterstützt uns! 🎜Das obige ist der detaillierte Inhalt vonSo implementieren Sie ein tägliches Benutzerlimit in Go. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!