Dieser Artikel wird Ihnen helfen, MongoDB zu verstehen und die umfangreichen Indextypen in MongoDB vorzustellen. Ich hoffe, er wird für alle hilfreich sein!
Die Indizes von MongoDB
und die Indizes von MySql
haben grundsätzlich ähnliche Funktionen und Prinzipien, die zur Optimierung befolgt werden müssen. Die Indextypen von MySqlCode> kann grundsätzlich unterschieden werden:<code>MongoDB
的索引和MySql
的索引的作用和优化要遵循的原则基本相似,MySql
索引类型基本可以区分为:
在MongoDB
中除了这些基础的分类之外,还有一些特殊的索引类型,如: 数组索引 | 稀疏索引 | 地理空间索引 | TTL索引等.
为了下面方便测试我们使用脚本插入以下数据
for(var i = 0;i < 100000;i++){ db.users.insertOne({ username: "user"+i, age: Math.random() * 100, sex: i % 2, phone: 18468150001+i }); }
单键索引即索引的字段只有一个,是最基础的索引方式.
在集合中使用username
字段,创建一个单键索引,MongoDB
会自动将这个索引命名为username_1
db.users.createIndex({username:1}) 'username_1'
在创建索引后查看一下使用username
字段的查询计划,stage
为IXSCAN
代表使用使用了索引扫描
db.users.find({username:"user40001"}).explain() { queryPlanner: { winningPlan: { ...... stage: 'FETCH', inputStage: { stage: 'IXSCAN', keyPattern: { username: 1 }, indexName: 'username_1', ...... } } rejectedPlans: [] , }, ...... ok: 1 }
在索引优化的原则当中,有很重要的原则就是索引要建立在基数高的的字段上,所谓基数就是一个字段上不重复数值的个数,即我们在创建users
集合时年龄出现的数值是0-99
那么age
这个字段将会有100个不重复的数值,即age
字段的基数为100,而sex
这个字段只会出现0 | 1
这个两个值,即sex
字段的基础是2,这是一个相当低的基数,在这种情况下,索引的效率并不高并且会导致索引失效.
下面就船舰一个sex
字段索引,来查询执行计划会发现,查询时是走的全表扫描,而没有走相关索引.
db.users.createIndex({sex:1}) 'sex_1' db.users.find({sex:1}).explain() { queryPlanner: { ...... winningPlan: { stage: 'COLLSCAN', filter: { sex: { '$eq': 1 } }, direction: 'forward' }, rejectedPlans: [] }, ...... ok: 1 }
联合索引即索引上会有多个字段,下面使用age
和sex
两个字段创建一个索引
db.users.createIndex({age:1,sex:1}) 'age_1_sex_1'
然后我们使用这两个字段进行一次查询,查看执行计划,顺利地走了这条索引
db.users.find({age:23,sex:1}).explain() { queryPlanner: { ...... winningPlan: { stage: 'FETCH', inputStage: { stage: 'IXSCAN', keyPattern: { age: 1, sex: 1 }, indexName: 'age_1_sex_1', ....... indexBounds: { age: [ '[23, 23]' ], sex: [ '[1, 1]' ] } } }, rejectedPlans: [], }, ...... ok: 1 }
数组索引就是对数组字段创建索引,也叫做多值索引,下面为了测试将users
集合中的数据增加一部分数组字段.
db.users.updateOne({username:"user1"},{$set:{hobby:["唱歌","篮球","rap"]}}) ......
创建数组索引并进行查看其执行计划,注意isMultiKey: true
表示使用的索引是多值索引.
db.users.createIndex({hobby:1}) 'hobby_1' db.users.find({hobby:{$elemMatch:{$eq:"钓鱼"}}}).explain() { queryPlanner: { ...... winningPlan: { stage: 'FETCH', filter: { hobby: { '$elemMatch': { '$eq': '钓鱼' } } }, inputStage: { stage: 'IXSCAN', keyPattern: { hobby: 1 }, indexName: 'hobby_1', isMultiKey: true, multiKeyPaths: { hobby: [ 'hobby' ] }, ...... indexBounds: { hobby: [ '["钓鱼", "钓鱼"]' ] } } }, rejectedPlans: [] }, ...... ok: 1 }
数组索引相比于其它索引来说索引条目和体积必然呈倍数增加,例如平均每个文档的hobby
数组的size
为10,那么这个集合的hobby
数组索引的条目数量将是普通索引的10倍.
联合数组索引
联合数组索引就是含有数组字段的联合索引,这种索引不支持一个索引中含有多个数组字段,即一个索引中最多能有一个数组字段,这是为了避免索引条目爆炸式增长,假设一个索引中有两个数组字段,那么这个索引条目的数量将是普通索引的n*m倍
在原先的users
集合上,增加一些地理信息
for(var i = 0;i < 100000;i++){ db.users.updateOne( {username:"user"+i}, { $set:{ location:{ type: "Point", coordinates: [100+Math.random() * 4,40+Math.random() * 3] } } }); }
创建一个二维空间索引
db.users.createIndex({location:"2dsphere"}) 'location_2dsphere' //查询500米内的人 db.users.find({ location:{ $near:{ $geometry:{type:"Point",coordinates:[102,41.5]}, $maxDistance:500 } } })
地理空间索引的type
有很多包含Ponit(点)
| LineString(线)
| Polygon(多边形)
等
TTL的全拼是time to live
,主要是用于过期数据自动删除,使用这种索引需要在文档中声明一个时间类型的字段,然后为这个字段创建TTL索引的时候还需要设置一个expireAfterSeconds
过期时间单位为秒,创建完成后MongoDB
for(var i = 90000;i < 100000;i++){ db.users.updateOne( {username:"user"+i}, { $set:{ createdDate:new Date() } }); }
username
in der Sammlung, um einen Einzelschlüsselindex zu erstellen, der diesem automatisch einen Namen gibt index username_1
🎜db.users.createIndex({createdDate:1},{expireAfterSeconds:60}) 'createdDate_1'
username
ist IXSCAN
, was bedeutet, dass ein Index-Scan verwendet wird. 🎜rrree🎜 Zu den Prinzipien der Indexoptimierung gehört, dass der Index auf einem Feld mit einer hohen Kardinalität aufgebaut werden sollte. Wiederholende Werte in einem Feld. Das heißt, wenn wir die users
-Sammlung erstellen, ist der angezeigte Wert für das Alter 0-99
Dann ist der Wert age</ Das Feld „code>“ enthält 100 eindeutige Werte, d 0 |. 1
, das heißt, die Basis des Feldes sex
ist eine relativ niedrige Basis. In diesem Fall ist die Indexeffizienz nicht hoch und führt zu einem Indexfehler . 🎜🎜 Lassen Sie uns einen sex
-Feldindex erstellen und den Ausführungsplan abfragen. Sie werden feststellen, dass die Abfrage einen vollständigen Tabellenscan verwendet, anstatt keine verwandte Indizierung zu verwenden.🎜db.runCommand({ collMod:"users", index:{ keyPattern:{createdDate:1}, expireAfterSeconds:120 } }) { expireAfterSeconds_old: 60, expireAfterSeconds_new: 120, ok: 1 }
age<. Erstellen Sie einen Index mit den beiden Feldern /code> und < code>sex
🎜db.users.createIndex({username:1},{partialFilterExpression:{ age:{$gt:50} }}) 'username_1' db.users.find({$and:[{username:"user4"},{age:60}]}).explain() { queryPlanner: { ...... winningPlan: { stage: 'FETCH', filter: { age: { '$eq': 60 } }, inputStage: { stage: 'IXSCAN', keyPattern: { username: 1 }, indexName: 'username_1', ...... isPartial: true, ...... } }, rejectedPlans: [] }, ...... ok: 1 }
for(var i = 5000;i < 10000;i++){ if(i < 9000){ db.users.updateOne( {username:"user"+i}, { $set:{email:(120000000+i)+"@qq.email"}} ) }else{ db.users.updateOne( {username:"user"+i}, { $set:{email:null}} ) } }
users
-Sammlung unten hinzu Array-Felder zu den Daten. 🎜db.users.find({email:null}) { _id: ObjectId("61bdc01ba59136670f6536fd"), username: 'user0', age: 64.41483801726282, sex: 0, phone: 18468150001, location: { type: 'Point', coordinates: [ 101.42490900320335, 42.2576650823515 ] } } ......
isMultiKey: true
angibt, dass der verwendete Index ein mehrwertiger Index ist zu anderen Indizes Im Allgemeinen müssen die Indexeinträge und das Volumen exponentiell zunehmen. Beispielsweise beträgt die durchschnittliche Größe
des hobby
-Arrays jedes Dokuments 10, dann das hobby< /code> dieser Sammlung Die Anzahl der Einträge im Array-Index beträgt das Zehnfache des normalen Index 🎜🎜<strong>Zugehöriger Array-Index</strong>🎜🎜 Ein gemeinsamer Array-Index ist ein gemeinsamer Index, der Array-Felder enthält Diese Art von Index unterstützt nicht mehrere Arrays in einem Indexfeld, das heißt, es kann höchstens ein Arrayfeld in einem Index enthalten Index, dann beträgt die Anzahl der Indexeinträge das n*m-fache eines normalen Index🎜< h3 data-id="heading-3"><strong>Geospatial Index</strong></h3>🎜Fügen Sie einige hinzu geografische Informationen zur ursprünglichen <code>Benutzer
-Sammlung🎜db.users.createIndex({email:1},{sparse:true}); 'email_1' db.users.find({email:null}).hint({email:1}) { _id: ObjectId("61bdc12ca59136670f655a25"), username: 'user9000', age: 94.18397576757012, sex: 0, phone: 18468159001, hobby: [ '钓鱼', '乒乓球' ], location: { type: 'Point', coordinates: [ 101.25903151863596, 41.38450145025062 ] }, email: null } ......
db.blog.insertMany([ {title:"hello world",content:"mongodb is the best database"}, {title:"index",content:"efficient data structure"} ]) //创建索引 db.blog.createIndex({title:"text",content:"text"}) 'title_text_content_text' //使用文本索引查询 db.blog.find({$text:{$search:"hello data"}}) { _id: ObjectId("61c092268c4037d17827d977"), title: 'index', content: 'efficient data structure' }, { _id: ObjectId("61c092268c4037d17827d976"), title: 'hello world', content: 'mongodb is the best database' }
Typ
des Geodatenindex enthält viele Ponit(point)</ code> |. <code>LineString(line)
|. Polygon( Polygon)
usw.🎜time to live
. Wird hauptsächlich zum automatischen Löschen abgelaufener Daten verwendet. Um diesen Index zu verwenden, müssen Sie ein Zeittypfeld im Dokument deklarieren und dann Wenn Sie einen TTL-Index für dieses Feld erstellen, müssen Sie außerdem eine Ablaufzeiteinheit von expireAfterSeconds
in Sekunden festlegen. Nach Abschluss der Erstellung checkt MongoDB
die Daten regelmäßig ein die Sammlung. Wann: 🎜MongoDB
将会自动将这些文档删除,这种索引还有以下这些要求:
delete
函数删除,效率并不高首先在我们文档上增减一个时间字段
for(var i = 90000;i < 100000;i++){ db.users.updateOne( {username:"user"+i}, { $set:{ createdDate:new Date() } }); }
创建一个TTL索引并且设定过期时间为60s,待过60s后查询,会发现这些数据已经不存在
db.users.createIndex({createdDate:1},{expireAfterSeconds:60}) 'createdDate_1'
另外还可以用CollMod
命令更改TTL索引的过期时间
db.runCommand({ collMod:"users", index:{ keyPattern:{createdDate:1}, expireAfterSeconds:120 } }) { expireAfterSeconds_old: 60, expireAfterSeconds_new: 120, ok: 1 }
条件索引也叫部分索引(partial),只对满足条件的数据进行建立索引.
只对50岁以上的user
进行建立username_1
索引,查看执行计划会发现isPartial
这个字段会变成true
db.users.createIndex({username:1},{partialFilterExpression:{ age:{$gt:50} }}) 'username_1' db.users.find({$and:[{username:"user4"},{age:60}]}).explain() { queryPlanner: { ...... winningPlan: { stage: 'FETCH', filter: { age: { '$eq': 60 } }, inputStage: { stage: 'IXSCAN', keyPattern: { username: 1 }, indexName: 'username_1', ...... isPartial: true, ...... } }, rejectedPlans: [] }, ...... ok: 1 }
一般的索引会根据某个字段为整个集合创建一个索引,即使某个文档不存这个字段,那么这个索引会把这个文档的这个字段当作null
建立在索引当中.
稀疏索引不会对文档中不存在的字段建立索引,如果这个字段存在但是为null
时,则会创建索引.
下面给users
集合中的部分数据创建稀疏索引
for(var i = 5000;i < 10000;i++){ if(i < 9000){ db.users.updateOne( {username:"user"+i}, { $set:{email:(120000000+i)+"@qq.email"}} ) }else{ db.users.updateOne( {username:"user"+i}, { $set:{email:null}} ) } }
当不建立索引使用{email:null}
条件进行查询时,我们会发现查出来的文档包含没有email
字段的文档
db.users.find({email:null}) { _id: ObjectId("61bdc01ba59136670f6536fd"), username: 'user0', age: 64.41483801726282, sex: 0, phone: 18468150001, location: { type: 'Point', coordinates: [ 101.42490900320335, 42.2576650823515 ] } } ......
然后对email
这个字段创建一个稀疏索引使用{email:null}
条件进行查询,则发现查询来的文档全部是email
字段存在且为null
的文档.
db.users.createIndex({email:1},{sparse:true}); 'email_1' db.users.find({email:null}).hint({email:1}) { _id: ObjectId("61bdc12ca59136670f655a25"), username: 'user9000', age: 94.18397576757012, sex: 0, phone: 18468159001, hobby: [ '钓鱼', '乒乓球' ], location: { type: 'Point', coordinates: [ 101.25903151863596, 41.38450145025062 ] }, email: null } ......
文本索引将建立索引的文档字段先进行分词再进行检索,但是目前还不支持中文分词.
下面增加两个文本字段,创建一个联合文本索引
db.blog.insertMany([ {title:"hello world",content:"mongodb is the best database"}, {title:"index",content:"efficient data structure"} ]) //创建索引 db.blog.createIndex({title:"text",content:"text"}) 'title_text_content_text' //使用文本索引查询 db.blog.find({$text:{$search:"hello data"}}) { _id: ObjectId("61c092268c4037d17827d977"), title: 'index', content: 'efficient data structure' }, { _id: ObjectId("61c092268c4037d17827d976"), title: 'hello world', content: 'mongodb is the best database' }
唯一索引就是在建立索引地字段上不能出现重复元素,除了单字段唯一索引还有联合唯一索引以及数组唯一索引(即数组之间不能有元素交集 )
//对title字段创建唯一索引 db.blog.createIndex({title:1},{unique:true}) 'title_1' //插入一个已经存在的title值 db.blog.insertOne({title:"hello world",content:"mongodb is the best database"}) MongoServerError: E11000 duplicate key error collection: mock.blog index: title_1 dup key: { : "hello world" } //查看一下执行计划,isUnique为true db.blog.find({"title":"index"}).explain() { queryPlanner: { ...... winningPlan: { stage: 'FETCH', inputStage: { stage: 'IXSCAN', keyPattern: { title: 1 }, indexName: 'title_1', isMultiKey: false, multiKeyPaths: { title: [] }, isUnique: true, ...... } }, rejectedPlans: [] }, ....... ok: 1 }
相关视频教程推荐:《MongoDB教程》
Das obige ist der detaillierte Inhalt vonLassen Sie uns mit Ihnen über die umfangreichen Indextypen in MongoDB sprechen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!