Inhaltsverzeichnis
Einführung in den Prim-Algorithmus
1. Der letzte Schliff
2. Einführung in den Algorithmus
3. Algorithmusschritte
Der Graph G=(V,E) ist ein ungerichteter verbundener gewichteter Graph, wie in der Abbildung unten dargestellt.
Heim Java javaLernprogramm Das Prinzip und die Implementierung des Prime-Algorithmus in Java (Zusammenfassungsfreigabe)

Das Prinzip und die Implementierung des Prime-Algorithmus in Java (Zusammenfassungsfreigabe)

Aug 15, 2022 pm 06:32 PM
java

Dieser Artikel vermittelt Ihnen relevantes Wissen über Java Der Prime-Algorithmus ist ein umfassender Suchalgorithmus zum Erstellen eines minimalen Spannbaums aus einem verbundenen Diagramm. In diesem Artikel werden hauptsächlich das Prinzip und die Implementierung des Prime-Algorithmus in Java vorgestellt. Wenn Sie interessiert sind, können Sie sich darüber informieren.

Das Prinzip und die Implementierung des Prime-Algorithmus in Java (Zusammenfassungsfreigabe)

Empfohlenes Lernen: „Java-Video-Tutorial

Einführung in den Prim-Algorithmus

1. Der letzte Schliff

Behandeln Sie beim Spanning Tree die Knoten, die sich bereits im Spanning Tree befinden, und Setzen Sie den Rest. Die Knoten werden als eine weitere Menge betrachtet, und die Kante mit dem geringsten Gewicht kann aus den Kanten ausgewählt werden, die die beiden Mengen verbinden.

2. Einführung in den Algorithmus

Wählen Sie zuerst einen Knoten aus, z. B. Knoten 1, und fügen Sie ihn in die Menge U, U = {1} ein. Die verbleibenden Knoten sind dann V-U = {2,3,4, 5 ,6,7}, die Menge V ist die Menge aller Knoten des Graphen.

Jetzt müssen Sie nur noch sehen, welche Kante unter den Kanten, die die beiden Mengen (U und V-U) verbinden, das kleinste Gewicht hat, und den Knoten, der der Kante mit dem kleinsten Gewicht zugeordnet ist, zur Menge U hinzufügen. Wie aus der obigen Abbildung ersichtlich ist, hat Kante 1-2 von den drei Kanten, die die beiden Mengen verbinden, das kleinste Gewicht. Wählen Sie sie aus und fügen Sie Knoten 2 zur Menge U, U={1,2}, V - U= hinzu { 3,4,5,6}, wie in der Abbildung unten gezeigt.

Wählen Sie dann aus den Kanten, die die beiden Sätze (U und V-U) verbinden, die Kante mit dem geringsten Gewicht aus. Wie aus der obigen Abbildung ersichtlich ist, ist unter den vier Kanten, die die beiden Mengen verbinden, das Kantengewicht von Knoten 2 bis Knoten 7 am kleinsten. Wählen Sie diese Kante aus und fügen Sie Knoten 7 zur Menge U = {1,2,7} hinzu. , V-U ={3,4,5,6}.

Fahren Sie so fort, bis U=V endet und der aus der ausgewählten Kante und allen Knoten bestehende Graph der minimale Spannbaum ist. Das ist Prims Algorithmus.

Wenn man das Bild intuitiv betrachtet, kann man leicht herausfinden, welche Kante von der Menge U zur Menge U-V das kleinste Gewicht hat. Allerdings ist der Zeitaufwand zu hoch, um diese Kanten im Programm vollständig aufzuzählen und dann das Minimum zu finden Wert. Dieses Problem kann geschickt gelöst werden, indem ein Array festgelegt wird. Closet[j] stellt den nächsten Nachbarpunkt vom Knoten j in der Menge V-U zur Menge U dar. Lowcost[j] stellt den Kantenwert vom Knoten j in der Menge V-U zum nächsten Nachbarpunkt dar setze U. Das heißt, das Gewicht der Kante (j, am nächsten [j]).

In der obigen Abbildung ist beispielsweise der nächste Nachbarpunkt von Knoten 7 zur Menge U 2, cloeest[7]=2. Der Kantenwert vom Knoten 7 zum nächsten Nachbarpunkt 2 beträgt 1, was dem Gewicht der Kante (2,7) entspricht und als lowcost[7]=1 aufgezeichnet wird, wie in der folgenden Abbildung dargestellt.

Suchen Sie also einfach den niedrigsten Lowcost[]-Knoten in der Menge V - U.

3. Algorithmusschritte

1. Lassen Sie die Menge U={u0}, u0 zu V gehören und initialisieren Sie die Arrays close[], lowcost[] und s[].

2. Finden Sie den Knoten t mit dem kleinsten Lowcost-Wert in der Menge V-U, d. h. lowcost[t]=min{lowcost[j]},j gehört zu V-U. Der Knoten t, der diese Formel erfüllt, ist der nächstgelegene Punkt U in der Menge V-U verbinden.

3. Füge Knoten t zur Menge U hinzu.

4. Wenn die Menge V – U leer ist, endet der Algorithmus, andernfalls fahren Sie mit Schritt 5 fort.

5. Aktualisieren Sie seine Lowcost[] und Nearest[] für alle Knoten j in der Menge V-U. if(C[t][j]

Befolgen Sie die oben genannten Schritte, und schließlich erhalten Sie einen Spannbaum mit der kleinsten Gewichtssumme.

4. Diagramm

Der Graph G=(V,E) ist ein ungerichteter verbundener gewichteter Graph, wie in der Abbildung unten dargestellt.

1 Initialisierung. Angenommen, u0 = 1, sei die Menge U = {1}, die Menge V-U = {2,3,4,5,6,7}, s[1] = wahr, initialisiere das Array am nächsten []: außer Knoten 1, Alle anderen Knoten sind 1, was bedeutet, dass die nächsten Nachbarpunkte von den Knoten in der Menge V-U zur Menge U alle 1 sind.lowcost[]: Der Kantenwert von Knoten 1 zum Knoten in der Menge V-U. „nest[]“ und „lowcost[]“ sind in der folgenden Abbildung dargestellt.

Das Bild nach der Initialisierung ist:

2 Finden Sie den Knoten mit den geringsten Kosten, entsprechend t=2. Die ausgewählten Kanten und Knoten sind wie unten dargestellt.

3 wird zur Menge U hinzugefügt. Fügen Sie den Knoten t zur Menge U, U={1,2} hinzu und aktualisieren Sie gleichzeitig V-U={3,4,5,6,7}

4. Für jeden benachbarten Punkt j von t in der Menge V-U kann dieser mit Hilfe von t aktualisiert werden. Die benachbarten Punkte von Knoten 2 sind Knoten 3 und Knoten 7.

C[2][3]=20

C[2][7]= 1< lowcost[7]=36, aktualisieren Sie die Entfernung des nächsten Nachbarn lowcost[7]=1, den nächsten Nachbarn nächstgelegene[7]=2;

Die aktualisierten nächstgelegenen [] und lowcost[] sind in der folgenden Abbildung dargestellt.

Der aktualisierte Satz sieht wie folgt aus:

5 Suchen Sie den Knoten mit den kleinsten Niedrigkosten, entsprechend t=7, und die ausgewählten Kanten und Knoten sind wie unten dargestellt.

6 Zum Set U hinzufügen. Fügen Sie den Knoten t zur Menge U, U={1,2,7} hinzu und aktualisieren Sie gleichzeitig V-U={3,4,5,6}

7. Für jeden benachbarten Punkt j von t in der Menge V-U kann dieser mit Hilfe von t aktualisiert werden. Die benachbarten Punkte von Knoten 7 sind die Knoten 3, 4, 5 und 6.

  • C[7][3]=4
  • C[7][4] =4< ;lowcost[4]=unendlich, Entfernung des nächsten Nachbarn aktualisieren lowcost[3]=9, nächster Nachbar am nächsten[4]=7;
  • C[7][5]=4
  • C[7][6]=4

Der aktualisierte nächstgelegene[] und günstigste[] sind in der folgenden Abbildung dargestellt.

Der aktualisierte Satz sieht wie folgt aus:

8 Suchen Sie den Knoten mit den kleinsten Niedrigkosten, entsprechend t=3, und die ausgewählten Kanten und Knoten sind wie unten dargestellt.

9 zu Set U hinzugefügt. Fügen Sie den Knoten t zur Menge U, U={1,2,3,7} hinzu und aktualisieren Sie gleichzeitig V-U={4,5,6}

10. Für jeden benachbarten Punkt j von t in der Menge V-U kann dieser mit Hilfe von t aktualisiert werden. Der Nachbar von Knoten 3 ist Knoten 4.

C[3][4]=15>lowcost[4]=9, die Arrays

closest[] und lowcost[] ändern sich nicht.

Der aktualisierte Satz sieht wie folgt aus:

11 Finden Sie den Knoten mit den kleinsten niedrigsten Kosten, entsprechend t=4, und die ausgewählten Kanten und Knoten sind wie unten gezeigt.

12 zu Set U hinzugefügt. Fügen Sie den Knoten t zur Menge U, U={1,2,3,4,7} hinzu und aktualisieren Sie gleichzeitig V-U={5,6}

13. Für jeden benachbarten Punkt j von t in der Menge V-U kann dieser mit Hilfe von t aktualisiert werden. Der Nachbar von Knoten 4 ist Knoten 5. 🔜 unten dargestellt.

Der aktualisierte Satz sieht wie folgt aus:

14 Suchen Sie den Knoten mit den kleinsten niedrigsten Kosten, entsprechend t=5, und die ausgewählten Kanten und Knoten sind wie unten gezeigt.

15 ​​​​​​zu Set U hinzugefügt. Fügen Sie den Knoten t zur Menge U, U={1,2,3,4,5,7} hinzu und aktualisieren Sie gleichzeitig V-U={6}

16. Für jeden benachbarten Punkt j von t in der Menge V-U kann dieser mit Hilfe von t aktualisiert werden. Der Nachbar von Knoten 5 ist Knoten 6.

C[5][6]=17

Der aktualisierte Satz ist wie folgt:

17 Finden Sie den Knoten mit den geringsten Kosten, entsprechend t=6. Die ausgewählten Kanten und Knoten sind wie unten dargestellt.

18 zu Set U hinzugefügt. Fügen Sie den Knoten t zur Menge U, U={1,2,3,4,5,6,7} hinzu und aktualisieren Sie gleichzeitig V-U={}

19. Für jeden benachbarten Punkt j von t in der Menge V-U kann dieser mit Hilfe von t aktualisiert werden. Knoten 6 hat keine benachbarten Punkte in der Menge V-U. Closest[] und lowcost[] müssen nicht aktualisiert werden.

20 Der erhaltene minimale Spannbaum ist wie folgt. Die Summe der Gewichte des minimalen aufspannenden Baums beträgt 57

Empfohlene Studie: „Java-Video-Tutorial

Das obige ist der detaillierte Inhalt vonDas Prinzip und die Implementierung des Prime-Algorithmus in Java (Zusammenfassungsfreigabe). Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat -Befehle und wie man sie benutzt
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Perfekte Zahl in Java Perfekte Zahl in Java Aug 30, 2024 pm 04:28 PM

Leitfaden zur perfekten Zahl in Java. Hier besprechen wir die Definition, Wie prüft man die perfekte Zahl in Java?, Beispiele mit Code-Implementierung.

Zufallszahlengenerator in Java Zufallszahlengenerator in Java Aug 30, 2024 pm 04:27 PM

Leitfaden zum Zufallszahlengenerator in Java. Hier besprechen wir Funktionen in Java anhand von Beispielen und zwei verschiedene Generatoren anhand ihrer Beispiele.

Weka in Java Weka in Java Aug 30, 2024 pm 04:28 PM

Leitfaden für Weka in Java. Hier besprechen wir die Einführung, die Verwendung von Weka Java, die Art der Plattform und die Vorteile anhand von Beispielen.

Smith-Nummer in Java Smith-Nummer in Java Aug 30, 2024 pm 04:28 PM

Leitfaden zur Smith-Zahl in Java. Hier besprechen wir die Definition: Wie überprüft man die Smith-Nummer in Java? Beispiel mit Code-Implementierung.

Fragen zum Java Spring-Interview Fragen zum Java Spring-Interview Aug 30, 2024 pm 04:29 PM

In diesem Artikel haben wir die am häufigsten gestellten Fragen zu Java Spring-Interviews mit ihren detaillierten Antworten zusammengestellt. Damit Sie das Interview knacken können.

Brechen oder aus Java 8 Stream foreach zurückkehren? Brechen oder aus Java 8 Stream foreach zurückkehren? Feb 07, 2025 pm 12:09 PM

Java 8 führt die Stream -API ein und bietet eine leistungsstarke und ausdrucksstarke Möglichkeit, Datensammlungen zu verarbeiten. Eine häufige Frage bei der Verwendung von Stream lautet jedoch: Wie kann man von einem Foreach -Betrieb brechen oder zurückkehren? Herkömmliche Schleifen ermöglichen eine frühzeitige Unterbrechung oder Rückkehr, aber die Stream's foreach -Methode unterstützt diese Methode nicht direkt. In diesem Artikel werden die Gründe erläutert und alternative Methoden zur Implementierung vorzeitiger Beendigung in Strahlverarbeitungssystemen erforscht. Weitere Lektüre: Java Stream API -Verbesserungen Stream foreach verstehen Die Foreach -Methode ist ein Terminalbetrieb, der einen Vorgang für jedes Element im Stream ausführt. Seine Designabsicht ist

Zeitstempel für Datum in Java Zeitstempel für Datum in Java Aug 30, 2024 pm 04:28 PM

Anleitung zum TimeStamp to Date in Java. Hier diskutieren wir auch die Einführung und wie man Zeitstempel in Java in ein Datum konvertiert, zusammen mit Beispielen.

Java -Programm, um das Kapselvolumen zu finden Java -Programm, um das Kapselvolumen zu finden Feb 07, 2025 am 11:37 AM

Kapseln sind dreidimensionale geometrische Figuren, die aus einem Zylinder und einer Hemisphäre an beiden Enden bestehen. Das Volumen der Kapsel kann berechnet werden, indem das Volumen des Zylinders und das Volumen der Hemisphäre an beiden Enden hinzugefügt werden. In diesem Tutorial wird erörtert, wie das Volumen einer bestimmten Kapsel in Java mit verschiedenen Methoden berechnet wird. Kapselvolumenformel Die Formel für das Kapselvolumen lautet wie folgt: Kapselvolumen = zylindrisches Volumenvolumen Zwei Hemisphäre Volumen In, R: Der Radius der Hemisphäre. H: Die Höhe des Zylinders (ohne die Hemisphäre). Beispiel 1 eingeben Radius = 5 Einheiten Höhe = 10 Einheiten Ausgabe Volumen = 1570,8 Kubikeinheiten erklären Berechnen Sie das Volumen mithilfe der Formel: Volumen = π × R2 × H (4

See all articles