


Führen Sie Sie Schritt für Schritt durch die Implementierung des Ausschnitts und die Änderung der Hintergrundfarbe über die Python-Aufrufschnittstelle
Manchmal müssen wir die Hintergrundfarbe unserer Ausweisfotos ändern und haben keine Zeit, ins Fotostudio zu gehen, um Fotos zu machen, und es ist nicht einfach, die Bilder mit PS auszuschneiden, also werde ich es heute tun Teilen Sie mit Ihnen, wie Sie mit Python die Bilder ausschneiden und die Hintergrundfarbe ändern können eingeben und authentifizieren.
Die Analyse des menschlichen Körpers finden Sie auf der Homepage der Konsole.
- Erstellen Sie eine Anwendung.
Sie können darin schreiben, was Sie wollen, aber neue Benutzer müssen kostenlose Ressourcen erhalten, sonst haben sie gewonnen Ich kann es nicht benutzen.
Nach Abschluss der Erstellung notieren Sie die Werte von API Key und Secret Key in der Anwendungsliste, die später verwendet werden.
An diesem Punkt sind die Aufgaben der Registrierung eines Kontos und der Erstellung eines Antrags abgeschlossen.
import os import requests import base64 import cv2 import numpy as np from PIL import Image from pathlib import Path path = os.getcwd() paths = list(Path(path).glob('*'))
2. Zugriffstoken erhalten
def get_access_token(): url = 'https://aip.baidubce.com/oauth/2.0/token' data = { 'grant_type': 'client_credentials', # 固定值 'client_id': '替换成你的API Key', # 在开放平台注册后所建应用的API Key 'client_secret': '替换成你的Secret Key' # 所建应用的Secret Key } res = requests.post(url, data=data) res = res.json() access_token = res['access_token'] return access_token

Wenn Sie Fragen zum Artikel haben: com/?_wv=1027&k=s5bZE0K3
def removebg():
try:
request_url = "https://aip.baidubce.com/rest/2.0/image-classify/v1/body_seg"
# 二进制方式打开图片文件
f = open(name, 'rb')
img = base64.b64encode(f.read())
params = {"image":img}
access_token = get_access_token()
request_url = request_url + "?access_token=" + access_token
headers = {'content-type': 'application/x-www-form-urlencoded'}
response = requests.post(request_url, data=params, headers=headers)
if response:
res = response.json()["foreground"]
png_name=name.split('.')[0]+".png"
with open(png_name,"wb") as f:
data = base64.b64decode(res)
f.write(data)
fullwhite(png_name) #png图片底色填充,视情况舍去
png_jpg(png_name) #png格式转jpg,视情况舍去
os.remove(png_name) #删除原png图片,视情况舍去
print(name+"\t处理成功!")
except Exception as e:
pass
Nach dem Login kopieren
4. Bildhintergrundfarbe füllendef removebg(): try: request_url = "https://aip.baidubce.com/rest/2.0/image-classify/v1/body_seg" # 二进制方式打开图片文件 f = open(name, 'rb') img = base64.b64encode(f.read()) params = {"image":img} access_token = get_access_token() request_url = request_url + "?access_token=" + access_token headers = {'content-type': 'application/x-www-form-urlencoded'} response = requests.post(request_url, data=params, headers=headers) if response: res = response.json()["foreground"] png_name=name.split('.')[0]+".png" with open(png_name,"wb") as f: data = base64.b64decode(res) f.write(data) fullwhite(png_name) #png图片底色填充,视情况舍去 png_jpg(png_name) #png格式转jpg,视情况舍去 os.remove(png_name) #删除原png图片,视情况舍去 print(name+"\t处理成功!") except Exception as e: pass
def fullwhite(png_name):
im = Image.open(png_name)
x,y = im.size
try:
p = Image.new('RGBA', im.size, (255,255,255)) # 使用白色来填充背景,视情况更改
p.paste(im, (0, 0, x, y), im)
p.save(png_name)
except:
pass
Nach dem Login kopieren
5. Bildkomprimierungdef fullwhite(png_name): im = Image.open(png_name) x,y = im.size try: p = Image.new('RGBA', im.size, (255,255,255)) # 使用白色来填充背景,视情况更改 p.paste(im, (0, 0, x, y), im) p.save(png_name) except: pass
#compress_rate:数值越小照片越模糊
def resize(compress_rate = 0.5):
im = Image.open(name)
w, h = im.size
im_resize = im.resize((int(w*compress_rate), int(h*compress_rate)))
resize_w, resieze_h = im_resize.size
#quality 代表图片质量,值越低越模糊
im_resize.save(name)
im.close()
Nach dem Login kopieren
#compress_rate:数值越小照片越模糊 def resize(compress_rate = 0.5): im = Image.open(name) w, h = im.size im_resize = im.resize((int(w*compress_rate), int(h*compress_rate))) resize_w, resieze_h = im_resize.size #quality 代表图片质量,值越低越模糊 im_resize.save(name) im.close()
7.png-Format zu jpgdef get_size(): size = os.path.getsize(name) return size / 1024Nach dem Login kopieren
8. Hauptfunktiondef png_jpg(png_name):
im = Image.open(png_name)
bg=Image.new('RGB',im.size,(255,255,255))
bg.paste(im)
jpg_name = png_name.split('.')[0]+".jpg"
#quality 代表图片质量,值越低越模糊
bg.save(jpg_name,quality=70)
im.close()
Nach dem Login kopieren
def png_jpg(png_name): im = Image.open(png_name) bg=Image.new('RGB',im.size,(255,255,255)) bg.paste(im) jpg_name = png_name.split('.')[0]+".jpg" #quality 代表图片质量,值越低越模糊 bg.save(jpg_name,quality=70) im.close()
9. Vollständiger Code
Wenn Sie Fragen zum Artikel haben, können Sie mir eine private Nachricht senden oder hierher kommen: https://jq.qq.com /?_wv=1027&k=s5bZE0K3if __name__ == '__main__':
for i in paths:
name = os.path.basename(i.name)
if(name==os.path.basename(__file__)):
continue
size = get_size()
##照片压缩
while size >=900:
size = get_size()
resize()
removebg()
print(" ")
Nach dem Login kopieren
if __name__ == '__main__': for i in paths: name = os.path.basename(i.name) if(name==os.path.basename(__file__)): continue size = get_size() ##照片压缩 while size >=900: size = get_size() resize() removebg() print(" ")
[Wichtig] Vorsichtsmaßnahmen vor der Verwendung
1. Dieses Programm überschreibt die Originaldatei. Bitte sichern Sie die Datei vor der Verwendung, um Datenverlust zu vermeiden 2. Kopieren Sie das Programm nach und Doppelklicken Sie im selben Verzeichnis wie die zu verarbeitenden Fotos auf das Programm, um es auszuführen
Code zählt nicht. Es gibt viele kleine Probleme auf dem Weg. Beispielsweise darf die Bildgröße 4 MB nicht überschreiten, und es gibt Probleme wie Pfade um diese Funktion zu implementieren! Okay, das heutige Teilen endet hier ~
][Verwandte Empfehlungen:
Python3-Video-Tutorial
Das obige ist der detaillierte Inhalt vonFühren Sie Sie Schritt für Schritt durch die Implementierung des Ausschnitts und die Änderung der Hintergrundfarbe über die Python-Aufrufschnittstelle. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Aktivieren Sie die Pytorch -GPU -Beschleunigung am CentOS -System erfordert die Installation von CUDA-, CUDNN- und GPU -Versionen von Pytorch. Die folgenden Schritte führen Sie durch den Prozess: Cuda und Cudnn Installation Bestimmen Sie die CUDA-Version Kompatibilität: Verwenden Sie den Befehl nvidia-smi, um die von Ihrer NVIDIA-Grafikkarte unterstützte CUDA-Version anzuzeigen. Beispielsweise kann Ihre MX450 -Grafikkarte CUDA11.1 oder höher unterstützen. Download und installieren Sie Cudatoolkit: Besuchen Sie die offizielle Website von Nvidiacudatoolkit und laden Sie die entsprechende Version gemäß der höchsten CUDA -Version herunter und installieren Sie sie, die von Ihrer Grafikkarte unterstützt wird. Installieren Sie die Cudnn -Bibliothek:

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Effizientes Training von Pytorch -Modellen auf CentOS -Systemen erfordert Schritte, und dieser Artikel bietet detaillierte Anleitungen. 1.. Es wird empfohlen, YUM oder DNF zu verwenden, um Python 3 und Upgrade PIP zu installieren: Sudoyumupdatepython3 (oder sudodnfupdatepython3), PIP3Install-upgradepip. CUDA und CUDNN (GPU -Beschleunigung): Wenn Sie Nvidiagpu verwenden, müssen Sie Cudatool installieren

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Bei der Auswahl einer Pytorch -Version unter CentOS müssen die folgenden Schlüsselfaktoren berücksichtigt werden: 1. Cuda -Version Kompatibilität GPU -Unterstützung: Wenn Sie NVIDIA -GPU haben und die GPU -Beschleunigung verwenden möchten, müssen Sie Pytorch auswählen, der die entsprechende CUDA -Version unterstützt. Sie können die CUDA-Version anzeigen, die unterstützt wird, indem Sie den Befehl nvidia-smi ausführen. CPU -Version: Wenn Sie keine GPU haben oder keine GPU verwenden möchten, können Sie eine CPU -Version von Pytorch auswählen. 2. Python Version Pytorch

Effizient verarbeiten Pytorch-Daten zum CentOS-System, die folgenden Schritte sind erforderlich: Abhängigkeit Installation: Aktualisieren Sie zuerst das System und installieren Sie Python3 und PIP: Sudoyumupdate-Judoyuminstallpython3-Tysudoyuminstallpython3-Pip-y, Download und installieren Sie Cudatoolkit und Cudnn-Model von der NVIDIA-offiziellen Website. Konfiguration der virtuellen Umgebung (empfohlen): Verwenden Sie Conda, um eine neue virtuelle Umgebung zu erstellen und zu aktivieren, zum Beispiel: condacreate-n

Die Installation von CentOS-Installationen erfordert die folgenden Schritte: Installieren von Abhängigkeiten wie Entwicklungstools, PCRE-Devel und OpenSSL-Devel. Laden Sie das Nginx -Quellcode -Paket herunter, entpacken Sie es, kompilieren Sie es und installieren Sie es und geben Sie den Installationspfad als/usr/local/nginx an. Erstellen Sie NGINX -Benutzer und Benutzergruppen und setzen Sie Berechtigungen. Ändern Sie die Konfigurationsdatei nginx.conf und konfigurieren Sie den Hörport und den Domänennamen/die IP -Adresse. Starten Sie den Nginx -Dienst. Häufige Fehler müssen beachtet werden, z. B. Abhängigkeitsprobleme, Portkonflikte und Konfigurationsdateifehler. Die Leistungsoptimierung muss entsprechend der spezifischen Situation angepasst werden, z. B. das Einschalten des Cache und die Anpassung der Anzahl der Arbeitsprozesse.
