


Praktische Aufzeichnungen einiger Probleme beim Speichern und Laden von Pytorch-Modellen
Dieser Artikel vermittelt Ihnen relevantes Wissen über Python. Er stellt hauptsächlich praktische Aufzeichnungen zu einigen Problemen beim Speichern und Laden von Pytorch-Modellen vor. Ich hoffe, dass er für alle hilfreich ist.
【Verwandte Empfehlungen: Python3-Video-Tutorial
1. So speichern und laden Sie Modelle in Torch1. Speichern und laden Sie Modellparameter und Modellstrukturenrrree
2 Laden des Modells – Diese Methode ist sicherer, aber etwas aufwändiger. 2. Probleme beim Speichern und Laden von Modellen im BrennerModell Beim Speichern wird der Pfad zur Modellstrukturdefinitionsdatei aufgezeichnet, dieser wird entsprechend dem Pfad analysiert und dann mit Parametern geladen. Wenn der Pfad zur Modelldefinitionsdatei geändert wird, wird ein Fehler gemeldet bei Verwendung von Torch.load(path).
Nach dem Ändern des Modellordners in „Modelle“ wird beim erneuten Laden ein Fehler gemeldet.
torch.save(model,path) torch.load(path)
Damit Sie die vollständige Modellstruktur und die Parameter speichern, achten Sie darauf, den Pfad der Modelldefinitionsdatei nicht zu ändern.
2. Nach dem Speichern des Einzelkarten-Trainingsmodells auf einem Computer mit mehreren Karten wird beim Laden auf einem Computer mit einer Karte ein Fehler gemeldet.
Beginnend bei 0 auf einem Computer mit mehreren Karten. Jetzt wird das Modell nach dem Speichern der Grafikkarte auf n>=1 trainiert torch.save(model.state_dict(),path)
model_state_dic = torch.load(path)
model.load_state_dic(model_state_dic)
import torch from model.TextRNN import TextRNN load_model = torch.load('experiment_model_save/textRNN.bin') print('load_model',load_model)
Nach dem Training des Modells mit mehreren GPUs gleichzeitig, unabhängig davon, ob die Modellstruktur und -parameter zusammen oder das Modell gespeichert werden Die Parameter werden separat gespeichert und dann unter einer einzigen Karte. Beim Laden von
a treten Probleme auf. Speichern Sie die Modellstruktur und die Parameter zusammen und verwenden Sie dann beim Laden des
import torch from model.TextRNN import TextRNN load_model = torch.load('experiment_model_save/textRNN_cuda_1.bin') print('load_model',load_model)
load_model = torch.load('experiment_model_save/textRNN_cuda_1.bin',map_location=torch.device('cpu'))

torch.distributed.init_process_group(backend='nccl')
Die Modellstruktur vor dem Packen:
Das gepackte Modellmodel = Transformer(num_encoder_layers=6,num_decoder_layers=6) state_dict = torch.load('train_model/clip/experiment.pt') model.load_state_dict(state_dict)

【Verwandte Empfehlungen:
Python3-Video-Tutorial】
Das obige ist der detaillierte Inhalt vonPraktische Aufzeichnungen einiger Probleme beim Speichern und Laden von Pytorch-Modellen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Hadidb: Eine leichte, hochrangige skalierbare Python-Datenbank Hadidb (HadIDB) ist eine leichte Datenbank in Python mit einem hohen Maß an Skalierbarkeit. Installieren Sie HadIDB mithilfe der PIP -Installation: PipinstallHadIDB -Benutzerverwaltung erstellen Benutzer: createUser (), um einen neuen Benutzer zu erstellen. Die Authentication () -Methode authentifiziert die Identität des Benutzers. fromHadidb.operationImportUseruser_obj = user ("admin", "admin") user_obj.

Es ist unmöglich, das MongoDB -Passwort direkt über Navicat anzuzeigen, da es als Hash -Werte gespeichert ist. So rufen Sie verlorene Passwörter ab: 1. Passwörter zurücksetzen; 2. Überprüfen Sie die Konfigurationsdateien (können Hash -Werte enthalten). 3. Überprüfen Sie Codes (May Hardcode -Passwörter).

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Die MySQL-Datenbankleistung Optimierungshandbuch In ressourcenintensiven Anwendungen spielt die MySQL-Datenbank eine entscheidende Rolle und ist für die Verwaltung massiver Transaktionen verantwortlich. Mit der Erweiterung der Anwendung werden jedoch die Datenbankleistung Engpässe häufig zu einer Einschränkung. In diesem Artikel werden eine Reihe effektiver Strategien zur Leistungsoptimierung von MySQL -Leistung untersucht, um sicherzustellen, dass Ihre Anwendung unter hohen Lasten effizient und reaktionsschnell bleibt. Wir werden tatsächliche Fälle kombinieren, um eingehende Schlüsseltechnologien wie Indexierung, Abfrageoptimierung, Datenbankdesign und Caching zu erklären. 1. Das Design der Datenbankarchitektur und die optimierte Datenbankarchitektur sind der Eckpfeiler der MySQL -Leistungsoptimierung. Hier sind einige Kernprinzipien: Die Auswahl des richtigen Datentyps und die Auswahl des kleinsten Datentyps, der den Anforderungen entspricht, kann nicht nur Speicherplatz speichern, sondern auch die Datenverarbeitungsgeschwindigkeit verbessern.

Als Datenprofi müssen Sie große Datenmengen aus verschiedenen Quellen verarbeiten. Dies kann Herausforderungen für das Datenmanagement und die Analyse darstellen. Glücklicherweise können zwei AWS -Dienste helfen: AWS -Kleber und Amazon Athena.

Zu den Schritten zum Starten eines Redis -Servers gehören: Installieren von Redis gemäß dem Betriebssystem. Starten Sie den Redis-Dienst über Redis-Server (Linux/macOS) oder redis-server.exe (Windows). Verwenden Sie den Befehl redis-cli ping (linux/macOS) oder redis-cli.exe ping (Windows), um den Dienststatus zu überprüfen. Verwenden Sie einen Redis-Client wie Redis-Cli, Python oder Node.js, um auf den Server zuzugreifen.

Um eine Warteschlange aus Redis zu lesen, müssen Sie den Warteschlangenname erhalten, die Elemente mit dem Befehl LPOP lesen und die leere Warteschlange verarbeiten. Die spezifischen Schritte sind wie folgt: Holen Sie sich den Warteschlangenname: Nennen Sie ihn mit dem Präfix von "Warteschlange:" wie "Warteschlangen: My-Queue". Verwenden Sie den Befehl LPOP: Wischen Sie das Element aus dem Kopf der Warteschlange aus und geben Sie seinen Wert zurück, z. B. die LPOP-Warteschlange: my-queue. Verarbeitung leerer Warteschlangen: Wenn die Warteschlange leer ist, gibt LPOP NIL zurück, und Sie können überprüfen, ob die Warteschlange existiert, bevor Sie das Element lesen.
