Inhaltsverzeichnis
Einführung in die Methode
Experimente und Ergebnisse
Heim Technologie-Peripheriegeräte KI Als GPT-4 über seinen Fehler nachdachte: Die Leistung stieg um fast 30 % und die Programmierfähigkeit um 21 %

Als GPT-4 über seinen Fehler nachdachte: Die Leistung stieg um fast 30 % und die Programmierfähigkeit um 21 %

Apr 04, 2023 am 11:55 AM
ai gpt-4

GPT-4s Denkweise wird immer menschlicher.

Wenn Menschen Fehler machen, werden sie über ihre Handlungen nachdenken, um zu vermeiden, dass sie erneut Fehler machen. Wenn große Sprachmodelle wie GPT-4 auch die Fähigkeit haben, zu reflektieren, wird die Leistung um wie viel verbessert.

Es ist bekannt, dass große Sprachmodelle (LLM) bei verschiedenen Aufgaben eine beispiellose Leistung gezeigt haben. Diese SOTA-Methoden erfordern jedoch normalerweise eine Feinabstimmung des Modells, eine Richtlinienoptimierung und andere Operationen im definierten Zustandsraum. Aufgrund des Mangels an qualitativ hochwertigen Trainingsdaten und einem klar definierten Zustandsraum ist es immer noch schwierig, das Optimierungsmodell zu implementieren. Darüber hinaus verfügen Modelle noch nicht über bestimmte Eigenschaften, die dem menschlichen Entscheidungsprozess innewohnen, insbesondere die Fähigkeit, aus Fehlern zu lernen.

Aber jetzt haben Forscher der Northeastern University, des MIT und anderer Institutionen in einem aktuellen Artikel Reflexion vorgeschlagen, das dem Agenten die Fähigkeit gibt, sich dynamisch zu erinnern und selbst zu reflektieren.

Um die Wirksamkeit der Methode zu überprüfen, wurde in dieser Studie die Fähigkeit des Agenten bewertet, Entscheidungsaufgaben in der AlfWorld-Umgebung zu erledigen, und seine Fähigkeit, wissensintensive, suchbasierte Frage- und Antwortaufgaben in der HotPotQA-Umgebung zu erledigen. Die Erfolgsquote bei diesen beiden Aufgaben beträgt 97 % bzw. 51 %.

Als GPT-4 über seinen Fehler nachdachte: Die Leistung stieg um fast 30 % und die Programmierfähigkeit um 21 %

Papieradresse: https://arxiv.org/pdf/2303.11366.pdf

Projektadresse: https://github.com/GammaTauAI/reflexion-human-eval

Wie im Bild unten gezeigt, In der Umgebung von AlfWorld sind verschiedene Objekte im Raum angeordnet, und der Agent muss einen Begründungsplan vorlegen, um ein bestimmtes Objekt zu erhalten. Der obere Teil des Bildes unten schlägt aufgrund des ineffizienten Plans des Agenten fehl. Nach der Überlegung erkennt der Agent den Fehler, korrigiert die Argumentationsbahn und gibt eine prägnante Bahnmethode an (unterer Teil der Abbildung).

Als GPT-4 über seinen Fehler nachdachte: Die Leistung stieg um fast 30 % und die Programmierfähigkeit um 21 %

Modellreflexion zu fehlerhaften Suchstrategien:

Als GPT-4 über seinen Fehler nachdachte: Die Leistung stieg um fast 30 % und die Programmierfähigkeit um 21 %

Dieser Artikel zeigt, dass Sie diesen Fehler beheben können, indem Sie GPT-4 bitten, über „Warum haben Sie sich geirrt?“ zu reflektieren und eine neue Eingabeaufforderung für sich selbst zu generieren werden so lange berücksichtigt, bis das Ergebnis stimmt, wodurch sich die Leistung von GPT-4 um erstaunliche 30 % verbessert.

Als GPT-4 über seinen Fehler nachdachte: Die Leistung stieg um fast 30 % und die Programmierfähigkeit um 21 %

Internetnutzer müssen seufzen: Die Entwicklungsgeschwindigkeit der künstlichen Intelligenz hat unsere Anpassungsfähigkeit übertroffen.

Als GPT-4 über seinen Fehler nachdachte: Die Leistung stieg um fast 30 % und die Programmierfähigkeit um 21 %

Einführung in die Methode

Die Gesamtarchitektur des Reflexion-Agenten ist in Abbildung 1 unten dargestellt, wo Reflexion ReAct verwendet (Yao et al., 2023). Im ersten Versuch erhält der Agent eine Aufgabe aus der Umgebung, die die anfängliche Abfrage darstellt. Anschließend führt der Agent eine vom LLM generierte Folge von Aktionen aus und erhält Beobachtungen und Belohnungen aus der Umgebung. Für Umgebungen, die beschreibende oder kontinuierliche Belohnungen bieten, beschränkt die Studie die Ausgabe auf einfache binäre Erfolgszustände, um die Anwendbarkeit sicherzustellen.

Als GPT-4 über seinen Fehler nachdachte: Die Leistung stieg um fast 30 % und die Programmierfähigkeit um 21 %

Nach jeder Aktion a_t berechnet der Agent eine heuristische Funktion h, wie in der folgenden Abbildung dargestellt.

Als GPT-4 über seinen Fehler nachdachte: Die Leistung stieg um fast 30 % und die Programmierfähigkeit um 21 %

Diese heuristische Funktion dient dazu, vom Agenten erzeugte Informationsillusionen (d. h. falsche oder falsche Informationen) zu erkennen ineffizient und „sagen“ dem Agenten, wann er reflektieren muss (Reflexion), wobei t der Zeitschritt ist, s_t der aktuelle Zustand ist, Ω die Anzahl der wiederholten Aktionszyklen darstellt, ε die maximale Gesamtzahl der ausgeführten Aktionen darstellt, [ a_o, o_0 , a_(t−1), o_(t−1)] stellt den Flugbahnverlauf dar. „repeat“ ist eine einfache Funktion, die bestimmt, wie oft eine Schleife wiederholter Aktionen zum gleichen Ergebnis führt.

Wenn die Funktion h dem Agenten mitteilt, dass sie reflektieren muss, fragt der Agent den LLM ab, um seine aktuelle Aufgabe, den Verlauf der Flugbahn und die letzte Belohnung widerzuspiegeln, und dann setzt der Agent die Umgebung zurück und versucht es bei nachfolgenden Versuchen erneut. Wenn die Funktion h dem Agenten nicht mitteilt, dass eine Reflexion erforderlich ist, fügt der Agent a_t und o_t zu seinem Trajektorienverlauf hinzu und fragt den LLM nach der nächsten Aktion ab.

Wenn die Heuristik h zum Zeitpunkt t eine Reflexion vorschlägt, wird der Agent basierend auf seinem aktuellen Zustand s_t, der letzten Belohnung r_t, früheren Aktionen und Beobachtungen [a_0, o_0, ., a_t, o_t] reflektieren Der Agent wird im MEM gespeichert, wodurch ein Reflexionsprozess eingeleitet wird.

Der Zweck der Reflexion besteht darin, dem Agenten zu helfen, „Illusionen“ und Ineffizienzen durch Versuch und Irrtum zu korrigieren. Das für die Reflexion verwendete Modell ist ein LLM, das spezifische Fehlerverläufe und ideale Reflexionsbeispiele als Anregung verwendet.

Als GPT-4 über seinen Fehler nachdachte: Die Leistung stieg um fast 30 % und die Programmierfähigkeit um 21 %

Der Agent führt den oben genannten Reflexionsprozess iterativ durch. In den Experimenten wurde in der Studie die Anzahl der im Speicher des Agenten gespeicherten Reflexionen auf maximal das Dreifache festgelegt, um Abfragen zu vermeiden, die die Grenzen des LLM überschreiten. Der Lauf wird in den folgenden Situationen abgebrochen:

  • Überschreitet die maximale Anzahl von Versuchen;
  • Kann die Leistung zwischen zwei aufeinanderfolgenden Versuchen nicht verbessert werden;
  • Schließt die Aufgabe ab.

Experimente und Ergebnisse

AlfWorld bietet sechs verschiedene Aufgaben und mehr als 3000 Umgebungen, die erfordern, dass der Agent die Zielaufgabe versteht, einen sequentiellen Plan für Unteraufgaben formuliert und Vorgänge in einer bestimmten Umgebung durchführt.

In der Studie wurde der Agent in 134 AlfWorld-Umgebungen getestet. Zu den Aufgaben gehörten das Auffinden versteckter Objekte (z. B. das Finden eines Obstmessers in einer Schublade), das Bewegen von Objekten (z. B. das Bewegen eines Messers auf ein Schneidebrett) und die Verwendung anderer Objekte zur Manipulation andere Gegenstände. Ein Gegenstand (z. B. Tomaten im Kühlschrank).

Ohne Reflexion beträgt die Genauigkeit des Agenten 63 %, und dann wird Reflexion zum Vergleich hinzugefügt. Die Ergebnisse zeigten, dass der Agent in 12 Versuchen 97 % der Umgebung bewältigen konnte und nur 4 von 134 Aufgaben nicht lösen konnte.

Als GPT-4 über seinen Fehler nachdachte: Die Leistung stieg um fast 30 % und die Programmierfähigkeit um 21 %

Das nächste Experiment wurde in HotPotQA durchgeführt, einem auf Wikipedia basierenden Datensatz, der 113.000 Frage- und Antwortpaare enthält. Er wird hauptsächlich verwendet, um die Fähigkeit des Agenten zu testen, Inhalte und Gründe zu analysieren.

Bei den 100 Frage-Antwort-Paartests von HotpotQA verglich die Studie Basisagenten und auf Reflexion basierende Agenten, bis es ihnen in aufeinanderfolgenden Versuchen nicht gelang, die Genauigkeit zu verbessern. Die Ergebnisse zeigen, dass sich die Leistung des Basisagenten nicht verbessert hat. Im ersten Test betrug die Genauigkeit des Basisagenten 34 % und die Genauigkeit des Reflexionsagenten betrug 32 % Der Wirkstoff hat sich deutlich verbessert. Die Verbesserung liegt bei fast 30 %, was viel besser ist als beim Basiswirkstoff.

Als GPT-4 über seinen Fehler nachdachte: Die Leistung stieg um fast 30 % und die Programmierfähigkeit um 21 %

In ähnlicher Weise übertraf GPT-4 mit Reflexion auch das reguläre GPT-4 deutlich, als es die Fähigkeit des Modells zum Schreiben von Code testete:

Als GPT-4 über seinen Fehler nachdachte: Die Leistung stieg um fast 30 % und die Programmierfähigkeit um 21 %

Das obige ist der detaillierte Inhalt vonAls GPT-4 über seinen Fehler nachdachte: Die Leistung stieg um fast 30 % und die Programmierfähigkeit um 21 %. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Welche Methode wird verwendet, um Strings in Objekte in Vue.js umzuwandeln? Welche Methode wird verwendet, um Strings in Objekte in Vue.js umzuwandeln? Apr 07, 2025 pm 09:39 PM

Bei der Konvertierung von Zeichenfolgen in Objekte in Vue.js wird JSON.Parse () für Standard -JSON -Zeichenfolgen bevorzugt. Bei nicht standardmäßigen JSON-Zeichenfolgen kann die Zeichenfolge durch Verwendung regelmäßiger Ausdrücke verarbeitet und Methoden gemäß dem Format oder dekodierten URL-kodiert reduziert werden. Wählen Sie die entsprechende Methode gemäß dem String -Format aus und achten Sie auf Sicherheits- und Codierungsprobleme, um Fehler zu vermeiden.

Laravels Geospatial: Optimierung interaktiver Karten und großen Datenmengen Laravels Geospatial: Optimierung interaktiver Karten und großen Datenmengen Apr 08, 2025 pm 12:24 PM

Verarbeiten Sie 7 Millionen Aufzeichnungen effizient und erstellen Sie interaktive Karten mit Geospatial -Technologie. In diesem Artikel wird untersucht, wie über 7 Millionen Datensätze mithilfe von Laravel und MySQL effizient verarbeitet und in interaktive Kartenvisualisierungen umgewandelt werden können. Erstes Herausforderungsprojektanforderungen: Mit 7 Millionen Datensätzen in der MySQL -Datenbank wertvolle Erkenntnisse extrahieren. Viele Menschen erwägen zunächst Programmiersprachen, aber ignorieren die Datenbank selbst: Kann sie den Anforderungen erfüllen? Ist Datenmigration oder strukturelle Anpassung erforderlich? Kann MySQL einer so großen Datenbelastung standhalten? Voranalyse: Schlüsselfilter und Eigenschaften müssen identifiziert werden. Nach der Analyse wurde festgestellt, dass nur wenige Attribute mit der Lösung zusammenhängen. Wir haben die Machbarkeit des Filters überprüft und einige Einschränkungen festgelegt, um die Suche zu optimieren. Kartensuche basierend auf der Stadt

Wie man MySQL löst, kann nicht gestartet werden Wie man MySQL löst, kann nicht gestartet werden Apr 08, 2025 pm 02:21 PM

Es gibt viele Gründe, warum MySQL Startup fehlschlägt und durch Überprüfung des Fehlerprotokolls diagnostiziert werden kann. Zu den allgemeinen Ursachen gehören Portkonflikte (prüfen Portbelegung und Änderung der Konfiguration), Berechtigungsprobleme (Überprüfen Sie den Dienst Ausführen von Benutzerberechtigungen), Konfigurationsdateifehler (Überprüfung der Parametereinstellungen), Datenverzeichniskorruption (Wiederherstellung von Daten oder Wiederaufbautabellenraum), InnoDB-Tabellenraumprobleme (prüfen IBDATA1-Dateien), Plug-in-Ladeversagen (Überprüfen Sie Fehlerprotokolle). Wenn Sie Probleme lösen, sollten Sie sie anhand des Fehlerprotokolls analysieren, die Hauptursache des Problems finden und die Gewohnheit entwickeln, Daten regelmäßig zu unterstützen, um Probleme zu verhindern und zu lösen.

VUE.JS Wie kann man ein Array von String -Typ in ein Array von Objekten umwandeln? VUE.JS Wie kann man ein Array von String -Typ in ein Array von Objekten umwandeln? Apr 07, 2025 pm 09:36 PM

Zusammenfassung: Es gibt die folgenden Methoden zum Umwandeln von VUE.JS -String -Arrays in Objektarrays: Grundlegende Methode: Verwenden Sie die Kartenfunktion, um regelmäßige formatierte Daten zu entsprechen. Erweitertes Gameplay: Die Verwendung regulärer Ausdrücke kann komplexe Formate ausführen, müssen jedoch sorgfältig geschrieben und berücksichtigt werden. Leistungsoptimierung: In Betracht ziehen die große Datenmenge, asynchrone Operationen oder effiziente Datenverarbeitungsbibliotheken können verwendet werden. Best Practice: Clear Code -Stil, verwenden Sie sinnvolle variable Namen und Kommentare, um den Code präzise zu halten.

So stellen Sie die Zeitüberschreitung von Vue Axios fest So stellen Sie die Zeitüberschreitung von Vue Axios fest Apr 07, 2025 pm 10:03 PM

Um die Zeitüberschreitung für Vue Axios festzulegen, können wir eine Axios -Instanz erstellen und die Zeitleitungsoption angeben: in globalen Einstellungen: vue.Prototyp. $ Axios = axios.create ({Timeout: 5000}); In einer einzigen Anfrage: this. $ axios.get ('/api/user', {timeout: 10000}).

So verwenden Sie MySQL nach der Installation So verwenden Sie MySQL nach der Installation Apr 08, 2025 am 11:48 AM

Der Artikel führt den Betrieb der MySQL -Datenbank vor. Zunächst müssen Sie einen MySQL -Client wie MySQLworkBench oder Befehlszeilen -Client installieren. 1. Verwenden Sie den Befehl mySQL-uroot-P, um eine Verbindung zum Server herzustellen und sich mit dem Stammkonto-Passwort anzumelden. 2. Verwenden Sie die Erstellung von Createdatabase, um eine Datenbank zu erstellen, und verwenden Sie eine Datenbank aus. 3.. Verwenden Sie CreateTable, um eine Tabelle zu erstellen, Felder und Datentypen zu definieren. 4. Verwenden Sie InsertInto, um Daten einzulegen, Daten abzufragen, Daten nach Aktualisierung zu aktualisieren und Daten nach Löschen zu löschen. Nur indem Sie diese Schritte beherrschen, lernen, mit gemeinsamen Problemen umzugehen und die Datenbankleistung zu optimieren, können Sie MySQL effizient verwenden.

Remote Senior Backend Engineers (Plattformen) benötigen Kreise Remote Senior Backend Engineers (Plattformen) benötigen Kreise Apr 08, 2025 pm 12:27 PM

Remote Senior Backend Engineer Job Vacant Company: Circle Standort: Remote-Büro-Jobtyp: Vollzeitgehalt: 130.000 bis 140.000 US-Dollar Stellenbeschreibung Nehmen Sie an der Forschung und Entwicklung von Mobilfunkanwendungen und öffentlichen API-bezogenen Funktionen, die den gesamten Lebenszyklus der Softwareentwicklung abdecken. Die Hauptaufgaben erledigen die Entwicklungsarbeit unabhängig von RubyonRails und arbeiten mit dem Front-End-Team von React/Redux/Relay zusammen. Erstellen Sie die Kernfunktionalität und -verbesserungen für Webanwendungen und arbeiten Sie eng mit Designer und Führung während des gesamten funktionalen Designprozesses zusammen. Fördern Sie positive Entwicklungsprozesse und priorisieren Sie die Iterationsgeschwindigkeit. Erfordert mehr als 6 Jahre komplexes Backend für Webanwendungen

So optimieren Sie die Datenbankleistung nach der MySQL -Installation So optimieren Sie die Datenbankleistung nach der MySQL -Installation Apr 08, 2025 am 11:36 AM

Die MySQL -Leistungsoptimierung muss von drei Aspekten beginnen: Installationskonfiguration, Indexierung und Abfrageoptimierung, Überwachung und Abstimmung. 1. Nach der Installation müssen Sie die my.cnf -Datei entsprechend der Serverkonfiguration anpassen, z. 2. Erstellen Sie einen geeigneten Index, um übermäßige Indizes zu vermeiden und Abfrageanweisungen zu optimieren, z. B. den Befehl Erklärung zur Analyse des Ausführungsplans; 3. Verwenden Sie das eigene Überwachungstool von MySQL (ShowProcessList, Showstatus), um die Datenbankgesundheit zu überwachen und die Datenbank regelmäßig zu sichern und zu organisieren. Nur durch kontinuierliche Optimierung dieser Schritte kann die Leistung der MySQL -Datenbank verbessert werden.

See all articles