Inhaltsverzeichnis
Im Allgemeinen gibt es drei Hauptschritte für Lösungen zur Gesichtserkennung von Tieren:
Der Verlust eines Haustiers ist für den Besitzer herzzerreißend. Und laut Statistik kommt das viel häufiger vor, als man denkt. In den Vereinigten Staaten ist jeder dritte Haushund und jede dritte Hauskatze irgendwann in seinem Leben verschwunden, und 80 % von ihnen wurden nie geborgen. Es gibt verschiedene Tools, die auf der Gesichtserkennung von Haustieren basieren und Besitzern dabei helfen können, ihre verlorenen Freunde zu finden.
Manchmal ist es sinnvoll, einen Algorithmus zu trainieren, um bestimmte Tiere zu erkennen. Tierbesitzer könnten beispielsweise von einem System profitieren, das ihr Tier genau identifiziert und entsprechende Maßnahmen ergreift, etwa einen Alarm sendet oder eine Tür öffnet, um das Tier hereinzulassen. Arkaitz Garro, ein Front-End-Ingenieur bei WeTransfer, hat eine Gesichtserkennungslösung für Tiere entwickelt, die die Katze eines Nachbarn identifizieren und Garro eine Warnung senden kann, wenn die Katze an der Tür auftaucht.
Neben der Identifizierung von Haustieren können Gesichtserkennungsalgorithmen auch zur Identifizierung anderer Arten eingesetzt werden. Eine im Journal of Marine Mammal Science veröffentlichte Studie untersuchte eine Reihe von Merkmalen, die zur Identifizierung von Delfinen erforderlich sind. Forscher verfolgten und fotografierten über einen Zeitraum von 12 Jahren 150 Große Tümmler. Das Forschungsteam wollte die Idee bewerten, das Gesicht und die Rückenflosse eines Delfins während seines gesamten Lebens zur Identifizierung zu verwenden.
Helfen Sie Landwirten, den Viehbestand zu überwachen.
Herausforderungen bei der Implementierung der Gesichtserkennungstechnologie für Tiere
Bestimmen Sie den optimalen Funktionsumfang.
Hängt von der Pose eines Tieres ab
Stellen Sie umfassende Trainingsdatensätze bereit.
Heim Technologie-Peripheriegeräte KI Wofür wird die Gesichtserkennungstechnologie von Tieren eingesetzt?

Wofür wird die Gesichtserkennungstechnologie von Tieren eingesetzt?

Apr 08, 2023 pm 01:41 PM
人工智能 面部识别 野生动物

Technologie, die Tiere genau identifizieren kann, kann dazu beitragen, Besitzer mit verlorenen Tieren wieder zusammenzuführen, Landwirten bei der Überwachung von Nutztieren zu helfen und Forschern bei der Erforschung von Wildtieren zu helfen. Historisch gesehen waren Mikrochips in dieser Hinsicht die beliebteste Methode zur Tieridentifizierung. Die Implantation des Chips erfordert jedoch einen invasiven chirurgischen Eingriff. Sie können ohne spezielle Ausrüstung nicht gelesen werden und Diebe können die Mikrochips entwenden. Eine weitere Methode ist die DNA-Analyse, die genau, aber auch sehr teuer und zeitaufwändig ist.

Wofür wird die Gesichtserkennungstechnologie von Tieren eingesetzt?

Tiergesichtserkennung (manchmal nicht nur Gesichter) mithilfe von Computer-Vision-Lösungen kann als praktikable Alternative zu den oben genannten Methoden dienen. Obwohl diese Technologie ihre Mängel aufweist, kann sie in bestimmten Situationen ein hohes Maß an Genauigkeit aufweisen. Wie funktioniert die Gesichtserkennung von Tieren? Wo liegen die Herausforderungen, die die Weiterentwicklung dieser Technologie behindern?

Im Allgemeinen gibt es drei Hauptschritte für Lösungen zur Gesichtserkennung von Tieren:

Fotografieren Sie Tiere mit einer hochauflösenden Kamera. Einige Algorithmen funktionieren nur bei vordefinierten Posen, daher müssen Bilder ausgewählt werden, die diese Kriterien erfüllen.

Merkmalsextraktion:

Bewerten Sie die Eignung der biometrischen Daten des Tieres und führen Sie bei Bedarf eine Vorverarbeitung durch. Der Algorithmus extrahiert dann den für die Erkennung erforderlichen Funktionsumfang.

Abgleich:

Die extrahierten Merkmale werden mathematisch dargestellt und mit anderen Bildern abgeglichen. Wenn wir beispielsweise in einer Datenbank für verlorene Haustiere nach einem Hund suchen, gleichen wir die einzigartigen Eigenschaften des Hundes mit allen Tieren in der Datenbank ab. Mehrere Möglichkeiten, den Abgleich durchzuführen. Eine Methode besteht darin, Algorithmen wie KNN und DBSCAN zum Clustering zu verwenden, um eine Reihe von Bildern zu erhalten, die unserem Zielbild sehr nahe kommen, und der Benutzer kann das am besten geeignete Bild manuell auswählen. Alternativ können probabilistische Methoden verwendet werden, um die Endergebnisse als Konfidenzniveaus auszudrücken.

Auf der Suche nach einem verlorenen Haustier

Der Verlust eines Haustiers ist für den Besitzer herzzerreißend. Und laut Statistik kommt das viel häufiger vor, als man denkt. In den Vereinigten Staaten ist jeder dritte Haushund und jede dritte Hauskatze irgendwann in seinem Leben verschwunden, und 80 % von ihnen wurden nie geborgen. Es gibt verschiedene Tools, die auf der Gesichtserkennung von Haustieren basieren und Besitzern dabei helfen können, ihre verlorenen Freunde zu finden.

Für Pfoten:

Diese Tiergesichtserkennungslösung identifiziert Hunde anhand ihrer Nasenspitze, Hautfarbe und Fellart. Tierhalter werden gebeten, mindestens drei Fotos hochzuladen, um ein „persönliches Profil“ ihres Tieres zu erstellen. Derzeit kann das Programm 130 Hunderassen mit einer Genauigkeit von 90 % identifizieren.

PiP:

Dieses Tieridentifizierungsunternehmen hat eine App entwickelt, mit der Tierhalter sich registrieren und Fotos ihrer Tiere hochladen können. Das System analysiert ihre einzigartigen Gesichtszüge. PiP behauptet, dass es jede verlorene Katze und jeden verlorenen Hund identifizieren kann, wenn der Besitzer weitere Informationen wie Geschlecht, Größe und Gewicht bereitstellt. Wer ein verlorenes Haustier findet, kann über die App auch den Besitzer ausfindig machen. Die Lösung von PiP durchsucht außerdem soziale Medien kontinuierlich nach Beiträgen zu Haustieren und sendet Benachrichtigungen über vermisste Haustiere an Bewohner relevanter Gemeinden.

Love Lost:

Love Lost von Petco ist eine weitere App, die Tierhaltern und Tierheimen hilft. Besitzern wird empfohlen, Profile ihrer Haustiere zu erstellen, damit die Software, wenn ein Haustier vermisst wird, damit beginnen kann, die biometrischen Informationen des Tieres neuen Tierheimmitgliedern und anderen Haustierkandidaten zuzuordnen. Bestimmte Tiere erkennen

Manchmal ist es sinnvoll, einen Algorithmus zu trainieren, um bestimmte Tiere zu erkennen. Tierbesitzer könnten beispielsweise von einem System profitieren, das ihr Tier genau identifiziert und entsprechende Maßnahmen ergreift, etwa einen Alarm sendet oder eine Tür öffnet, um das Tier hereinzulassen. Arkaitz Garro, ein Front-End-Ingenieur bei WeTransfer, hat eine Gesichtserkennungslösung für Tiere entwickelt, die die Katze eines Nachbarn identifizieren und Garro eine Warnung senden kann, wenn die Katze an der Tür auftaucht.

Um das Foto der Katze aufzunehmen, verwendete Garro eine kleine Kamera und einen Raspberry Pi mit Bewegungserkennungssoftware. Wenn sich ein Tier der Kamera nähert, wird ein Foto aufgenommen und an die AWS-Erkennungsplattform gesendet, um es mit anderen von Garro hochgeladenen Fotos der Katze zu vergleichen. Bei einer Übereinstimmung wird der Techniker benachrichtigt.

Microsoft hat außerdem ein Internet-of-Things-Gerät (IOT) entwickelt, das Tiererkennung durchführen und mit dem Haustierportal verbunden werden kann. Sobald es erkennt, dass es sich um Ihr Haustier handelt, öffnet das Gerät die Tür und lässt es herein.

Unterstützung der wissenschaftlichen Forschung – Gesichtserkennung von Delfinen

Neben der Identifizierung von Haustieren können Gesichtserkennungsalgorithmen auch zur Identifizierung anderer Arten eingesetzt werden. Eine im Journal of Marine Mammal Science veröffentlichte Studie untersuchte eine Reihe von Merkmalen, die zur Identifizierung von Delfinen erforderlich sind. Forscher verfolgten und fotografierten über einen Zeitraum von 12 Jahren 150 Große Tümmler. Das Forschungsteam wollte die Idee bewerten, das Gesicht und die Rückenflosse eines Delfins während seines gesamten Lebens zur Identifizierung zu verwenden.

Von den 150 Versuchspersonen hatten nur 31 Delfine vollständige Profile (d. h. klare Fotos der linken und rechten Seite des Gesichts und der Rückenflossen). Die Studie stützte sich auf menschliche Expertenmeinungen und statistische Methoden, um Ähnlichkeiten zwischen verschiedenen Bildern desselben Delfins festzustellen.

Experimentelle Ergebnisse zeigen, dass die Gesichtszüge von Delfinen über die Zeit hinweg konstant bleiben und zu Identifizierungszwecken verwendet werden können. Die Fähigkeit, Jungtiere auch im Erwachsenenalter zu identifizieren, hat die Erforschung von Delfinen erheblich erleichtert.

Helfen Sie Landwirten, den Viehbestand zu überwachen.

Die Identifizierung von Nutztieren ist ein anspruchsvoller Prozess. Bei Schweinen ist es schwieriger, weil alle Schweine gleich aussehen. Aber Kühe sind etwas Besonderes. Sie sind schwarz und weiß und haben unterschiedliche Formen. Bei Kühen stellt sich jedoch eine weitere Herausforderung: Wo sollen die Kameras installiert werden? Kühe sind neugierige Tiere und bemerken selbst kleinste Veränderungen in ihrer Umgebung. Sie versuchen oft, die Kamera zu lecken oder auf andere Weise mit ihr zu interagieren.

Aber der Aufbau eines Systems, das einzelne Kühe identifizieren kann, wird den Landwirten enorm helfen. Diese Lösung gleicht die Gesundheit und Ernährungsgewohnheiten eines Tieres mit der Identität des Tieres ab. Mithilfe künstlicher Intelligenz wird es in der Lage sein, Anzeichen von Krankheiten und abnormalem Verhalten zu erkennen und Landwirte im Notfall zu benachrichtigen.

Die Kernalgorithmusplattform von Beijing Xiangchuang Technology hat die Datenerfassung und Gesichtserkennung von Schweinen, Rindern, Schafen, Eseln und anderen Nutztieren realisiert und mehr als zig Millionen Gesichtsdaten von Nutztieren gesammelt. Es unterstützt Landwirte nicht nur bei der Durchführung eines verfeinerten Zuchtmanagements, sondern unterstützt auch Banken, Versicherungen und andere Finanzinstitute bei der Einrichtung von Risikobewertungs- und Frühwarnsystemen bei der Geschäftstätigkeit in der Zuchtindustrie.

Herausforderungen bei der Implementierung der Gesichtserkennungstechnologie für Tiere

Die Gesichtserkennungstechnologie für Tiere hinkt der derzeit recht fortschrittlichen Gesichtserkennungstechnologie für Menschen weit hinterher. Forscher begannen vor etwa vier Jahren mit der Gesichtserkennung von Tieren zu experimentieren, doch die Genauigkeit gängiger Techniken ist immer noch recht gering. Andererseits können Lösungen mit einem bestimmten Zweck, beispielsweise der Identifizierung eines bestimmten Tieres, genau sein.

Unternehmen, die Gesichtserkennungslösungen für Tiere implementieren möchten, müssen drei Hauptherausforderungen berücksichtigen:

Bestimmen Sie den optimalen Funktionsumfang.

Wissenschaftler haben einen Merkmalsvektor spezifiziert, der für die eindeutige Gesichtserkennung verwendet werden kann. Bei Tieren funktioniert der gleiche Ansatz jedoch nicht, weil wir nicht wissen, welche Funktionen wir nutzen müssen und wie wir sie interpretieren sollen. Wenn Wissenschaftler beispielsweise mit Menschen arbeiten, können sie Variational Autoencoder (VAE)-Architekturen verwenden, um Merkmale aus Gesichtern zu extrahieren. Bei dieser Methode wird ein Foto einer Person in einen Vektor komprimiert, der die gewünschten Merkmale wie Hautton und Gesichtsausdruck enthält.

Für die Gesichtserkennung von Tieren gibt es derzeit keine zuverlässigen Merkmalsvektoren. Die Lösung der Herausforderung eines zuverlässigen Merkmalsvektors wird die Forschung auf diesem Gebiet erheblich voranbringen.

Ein Open-Source-Beispiel in dieser Hinsicht ist DogFaceNet, eine Deep-Learning-basierte Implementierung der Hundeerkennung. Es nutzt die Augen und die Nase des Hundes als Funktionssatz. Diese Lösung funktioniert einigermaßen gut, wenn das Gesamtziel darin besteht, Hunderassen zu unterscheiden, aber wenn es darum geht, einzelne Tiere zu unterscheiden, schneidet sie eher schlecht ab.

Hängt von der Pose eines Tieres ab

Ein weiteres Beispiel ist die Verwendung des Local Binary Pattern Histogram (LBPH)-Algorithmus, der Bilder in Pixel umwandelt, indem er die Pixelwerte verschiedener Bilder vergleicht. Diese Methode hängt von der Körperhaltung des Tieres ab, wodurch es empfindlich auf Haltungsänderungen reagiert.

Für Menschen ist es einfach, eine bestimmte Pose einzunehmen und still zu sitzen. Komplizierter wird es jedoch, wenn wir versuchen, eine Katze oder einen Hund dazu zu bringen, in einer bestimmten Position ruhig zu bleiben.

Stellen Sie umfassende Trainingsdatensätze bereit.

Damit das Training effektiv ist, müssen die Daten vielfältig sein und alle Aufgaben abdecken, die der Algorithmus ausführen soll. Wenn der Algorithmus beispielsweise verschiedene Hunderassen identifizieren soll, sollte der Datensatz alle aus verschiedenen Blickwinkeln erfassten Rassen ausreichend abdecken und entsprechend gekennzeichnet sein. Hier kann einiges schief gehen. Beispielsweise könnte jemand ein Bild einer Mischlingsrasse einreichen, und jemand könnte sein Bild falsch beschriften und den falschen Rassennamen zuordnen. Um solche Probleme zu vermeiden, müssen Experten alle Fotos im Datensatz einzeln überprüfen, um die Echtheit des Bildes und die Richtigkeit der Beschriftungen zu überprüfen.

Fortschritte auf dem Gebiet der Gesichtserkennung von Tieren wurden behindert, weil Forscher immer noch nicht die optimale Kombination von Merkmalen bestimmen können, die zur genauen Identifizierung von Tieren im großen Maßstab verwendet werden können. Dennoch gibt es einige erfolgreiche Anwendungen, die auf begrenzten Daten basieren, beispielsweise zur Identifizierung eines bestimmten Tieres oder einer kleinen Gruppe von Haus- oder Wildtieren.

Wenn Sie Ihr eigenes Tiergesichtserkennungssystem aufbauen, denken Sie daran, dass Tiere unkooperative biometrische Benutzer sind. Einige werden darauf bestehen, die Kamera abzulecken, andere weigern sich, aufzustehen und Fotos zu machen.


Das obige ist der detaillierte Inhalt vonWofür wird die Gesichtserkennungstechnologie von Tieren eingesetzt?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Bytedance Cutting führt SVIP-Supermitgliedschaft ein: 499 Yuan für ein fortlaufendes Jahresabonnement, das eine Vielzahl von KI-Funktionen bietet Bytedance Cutting führt SVIP-Supermitgliedschaft ein: 499 Yuan für ein fortlaufendes Jahresabonnement, das eine Vielzahl von KI-Funktionen bietet Jun 28, 2024 am 03:51 AM

Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Kontexterweiterter KI-Codierungsassistent mit Rag und Sem-Rag Kontexterweiterter KI-Codierungsassistent mit Rag und Sem-Rag Jun 10, 2024 am 11:08 AM

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Sieben coole technische Interviewfragen für GenAI und LLM Sieben coole technische Interviewfragen für GenAI und LLM Jun 07, 2024 am 10:06 AM

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Kann LLM durch Feinabstimmung wirklich neue Dinge lernen: Die Einführung neuen Wissens kann dazu führen, dass das Modell mehr Halluzinationen hervorruft Kann LLM durch Feinabstimmung wirklich neue Dinge lernen: Die Einführung neuen Wissens kann dazu führen, dass das Modell mehr Halluzinationen hervorruft Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Jun 05, 2024 pm 08:51 PM

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Um ein neues wissenschaftliches und komplexes Frage-Antwort-Benchmark- und Bewertungssystem für große Modelle bereitzustellen, haben UNSW, Argonne, die University of Chicago und andere Institutionen gemeinsam das SciQAG-Framework eingeführt Um ein neues wissenschaftliches und komplexes Frage-Antwort-Benchmark- und Bewertungssystem für große Modelle bereitzustellen, haben UNSW, Argonne, die University of Chicago und andere Institutionen gemeinsam das SciQAG-Framework eingeführt Jul 25, 2024 am 06:42 AM

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

SK Hynix wird am 6. August neue KI-bezogene Produkte vorstellen: 12-Layer-HBM3E, 321-High-NAND usw. SK Hynix wird am 6. August neue KI-bezogene Produkte vorstellen: 12-Layer-HBM3E, 321-High-NAND usw. Aug 01, 2024 pm 09:40 PM

Laut Nachrichten dieser Website vom 1. August hat SK Hynix heute (1. August) einen Blogbeitrag veröffentlicht, in dem es ankündigt, dass es am Global Semiconductor Memory Summit FMS2024 teilnehmen wird, der vom 6. bis 8. August in Santa Clara, Kalifornien, USA, stattfindet viele neue Technologien Generation Produkt. Einführung des Future Memory and Storage Summit (FutureMemoryandStorage), früher Flash Memory Summit (FlashMemorySummit), hauptsächlich für NAND-Anbieter, im Zusammenhang mit der zunehmenden Aufmerksamkeit für die Technologie der künstlichen Intelligenz wurde dieses Jahr in Future Memory and Storage Summit (FutureMemoryandStorage) umbenannt Laden Sie DRAM- und Speicheranbieter und viele weitere Akteure ein. Neues Produkt SK Hynix wurde letztes Jahr auf den Markt gebracht

SOTA Performance, eine multimodale KI-Methode zur Vorhersage der Protein-Ligand-Affinität in Xiamen, kombiniert erstmals molekulare Oberflächeninformationen SOTA Performance, eine multimodale KI-Methode zur Vorhersage der Protein-Ligand-Affinität in Xiamen, kombiniert erstmals molekulare Oberflächeninformationen Jul 17, 2024 pm 06:37 PM

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S

See all articles