


Wie teile ich einen Datensatz richtig auf? Zusammenfassung von drei gängigen Methoden
Die Zerlegung des Datensatzes in einen Trainingssatz kann uns helfen, das Modell zu verstehen, was für die Verallgemeinerung des Modells auf neue, unsichtbare Daten sehr wichtig ist. Ein Modell lässt sich möglicherweise nicht gut auf neue, noch nicht sichtbare Daten verallgemeinern, wenn es überangepasst ist. Daher können keine guten Vorhersagen getroffen werden.
Eine geeignete Validierungsstrategie ist der erste Schritt, um erfolgreich gute Vorhersagen zu erstellen und den Geschäftswert von KI-Modellen zu nutzen. In diesem Artikel wurden einige gängige Strategien zur Datenaufteilung zusammengestellt.
Einfache Aufteilung von Training und Tests
Teilen Sie den Datensatz in Trainings- und Validierungsteile auf, mit 80 % Training und 20 % Validierung. Sie können dies mithilfe der Zufallsstichprobe von Scikit tun.
Zunächst muss der zufällige Startwert korrigiert werden, da sonst die gleiche Datenaufteilung nicht verglichen werden kann und die Ergebnisse beim Debuggen nicht reproduziert werden können. Wenn der Datensatz klein ist, gibt es keine Garantie dafür, dass die Validierungsaufteilung nicht mit der Trainingsaufteilung korreliert. Wenn die Daten unausgeglichen sind, erhalten Sie nicht das gleiche Aufteilungsverhältnis.
Eine einfache Aufteilung kann uns also nur beim Entwickeln und Debuggen helfen. Echtes Training ist nicht perfekt genug, daher können uns die folgenden Aufteilungsmethoden helfen, diese Probleme zu beseitigen.
K-fache Kreuzvalidierung
teilt den Datensatz in k Partitionen auf. Im Bild unten ist der Datensatz in 5 Partitionen unterteilt.
Wählen Sie eine Partition als Validierungsdatensatz aus, während die anderen Partitionen als Trainingsdatensatz dienen. Dadurch wird das Modell auf jedem unterschiedlichen Satz von Partitionen trainiert.
Schließlich werden K verschiedene Modelle erhalten, und diese Modelle werden unter Verwendung der Integrationsmethode bei späteren Überlegungen und Vorhersagen zusammen verwendet.
K ist normalerweise auf [3,5,7,10,20] eingestellt.
Wenn Sie die Modellleistung mit geringer Vorspannung überprüfen möchten, verwenden Sie einen höheren K [20]. Wenn Sie ein Modell für die Variablenauswahl erstellen, verwenden Sie ein niedriges k [3,5] und das Modell weist eine geringere Varianz auf.
Vorteile:
- Durch die Mittelung von Modellvorhersagen können Sie die Modellleistung bei unbekannten Daten aus derselben Verteilung verbessern.
- Dies ist eine weit verbreitete Methode, um gute Serienmodelle zu erhalten.
- Sie können verschiedene Integrationstechniken verwenden, um Vorhersagen für alle Daten im Datensatz zu erstellen und diese Vorhersagen zur Verbesserung des Modells zu verwenden, das als OOF (Out-Fold-Vorhersage) bezeichnet wird.
Frage:
- Wenn Sie einen unausgeglichenen Datensatz haben, verwenden Sie Stratified-kFold.
- Wenn Sie ein Modell für alle Datensätze neu trainieren, können Sie seine Leistung nicht mit einem Modell vergleichen, das mit k-Fold trainiert wurde. Da dieses Modell auf k-1 trainiert wird, nicht auf dem gesamten Datensatz.
Stratified-kFold
kann das Verhältnis zwischen verschiedenen Klassen in jeder Falte beibehalten. Wenn der Datensatz unausgeglichen ist, hat Klasse1 beispielsweise 10 Beispiele und Klasse2 100 Beispiele. Stratified-kFold erstellt jede Faltenklassifizierung mit dem gleichen Verhältnis wie der Originaldatensatz
Die Idee ähnelt der K-Falten-Kreuzvalidierung, jedoch mit dem gleichen Verhältnis für jede Falte wie der Originaldatensatz.
Das anfängliche Verhältnis zwischen den Klassen kann in jedem Split beibehalten werden. Wenn Ihr Datensatz groß ist, behält die Kreuzvalidierung der K-Faltung möglicherweise auch die Proportionen bei, diese ist jedoch stochastisch, während Stratified-kFold deterministisch ist und bei kleinen Datensätzen verwendet werden kann.
Bootstrap und Subsampling
Bootstrap und Subsampling ähneln der K-Fold-Kreuzvalidierung, haben jedoch keine festen Falten. Es wählt zufällig einige Daten aus dem Datensatz aus, verwendet andere Daten zur Validierung und wiederholt sie n-mal.
Bootstrap = alternierende Stichprobe, die wir in früheren Artikeln ausführlich vorgestellt haben.
Wann sollte man es verwenden? Bootstrap und Subsampling können nur verwendet werden, wenn der Standardfehler des geschätzten metrischen Fehlers groß ist. Dies kann auf Ausreißer im Datensatz zurückzuführen sein.
Zusammenfassung
Normalerweise wird beim maschinellen Lernen die k-fache Kreuzvalidierung als Ausgangspunkt verwendet. Wenn der Datensatz unausgeglichen ist, können Bootstrap oder andere Methoden verwendet werden Verbessern Sie die Datenfaltung.
Das obige ist der detaillierte Inhalt vonWie teile ich einen Datensatz richtig auf? Zusammenfassung von drei gängigen Methoden. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

Laienhaft ausgedrückt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Eingabedaten einer vorhergesagten Ausgabe zuordnet. Genauer gesagt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Modellparameter anpasst, indem sie aus Trainingsdaten lernt, um den Fehler zwischen der vorhergesagten Ausgabe und der wahren Bezeichnung zu minimieren. Beim maschinellen Lernen gibt es viele Modelle, z. B. logistische Regressionsmodelle, Entscheidungsbaummodelle, Support-Vektor-Maschinenmodelle usw. Jedes Modell verfügt über seine anwendbaren Datentypen und Problemtypen. Gleichzeitig gibt es viele Gemeinsamkeiten zwischen verschiedenen Modellen oder es gibt einen verborgenen Weg für die Modellentwicklung. Am Beispiel des konnektionistischen Perzeptrons können wir es durch Erhöhen der Anzahl verborgener Schichten des Perzeptrons in ein tiefes neuronales Netzwerk umwandeln. Wenn dem Perzeptron eine Kernelfunktion hinzugefügt wird, kann es in eine SVM umgewandelt werden. Dieses hier

In diesem Artikel wird vorgestellt, wie Überanpassung und Unteranpassung in Modellen für maschinelles Lernen mithilfe von Lernkurven effektiv identifiziert werden können. Unteranpassung und Überanpassung 1. Überanpassung Wenn ein Modell mit den Daten übertrainiert ist, sodass es daraus Rauschen lernt, spricht man von einer Überanpassung des Modells. Ein überangepasstes Modell lernt jedes Beispiel so perfekt, dass es ein unsichtbares/neues Beispiel falsch klassifiziert. Für ein überangepasstes Modell erhalten wir einen perfekten/nahezu perfekten Trainingssatzwert und einen schrecklichen Validierungssatz-/Testwert. Leicht geändert: „Ursache der Überanpassung: Verwenden Sie ein komplexes Modell, um ein einfaches Problem zu lösen und Rauschen aus den Daten zu extrahieren. Weil ein kleiner Datensatz als Trainingssatz möglicherweise nicht die korrekte Darstellung aller Daten darstellt. 2. Unteranpassung Heru.“

In den 1950er Jahren wurde die künstliche Intelligenz (KI) geboren. Damals entdeckten Forscher, dass Maschinen menschenähnliche Aufgaben wie das Denken ausführen können. Später, in den 1960er Jahren, finanzierte das US-Verteidigungsministerium künstliche Intelligenz und richtete Labore für die weitere Entwicklung ein. Forscher finden Anwendungen für künstliche Intelligenz in vielen Bereichen, etwa bei der Erforschung des Weltraums und beim Überleben in extremen Umgebungen. Unter Weltraumforschung versteht man die Erforschung des Universums, das das gesamte Universum außerhalb der Erde umfasst. Der Weltraum wird als extreme Umgebung eingestuft, da sich seine Bedingungen von denen auf der Erde unterscheiden. Um im Weltraum zu überleben, müssen viele Faktoren berücksichtigt und Vorkehrungen getroffen werden. Wissenschaftler und Forscher glauben, dass die Erforschung des Weltraums und das Verständnis des aktuellen Zustands aller Dinge dazu beitragen können, die Funktionsweise des Universums zu verstehen und sich auf mögliche Umweltkrisen vorzubereiten

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist
