Inhaltsverzeichnis
FastAPI
Benutzerfreundlichkeit
Dokumentation
Erweiterbarkeit
Data Science-Funktionen
Fazit
Heim Backend-Entwicklung Python-Tutorial Vergleich von FastAPI, Flask und Streamlit für die Webentwicklung

Vergleich von FastAPI, Flask und Streamlit für die Webentwicklung

Apr 09, 2023 am 11:51 AM
python 编程语言 web 开发

Python hat sich dank seiner Einfachheit, Vielseitigkeit und umfangreichen Sammlung an Bibliotheken und Frameworks zu einer der beliebtesten Programmiersprachen für die Webentwicklung entwickelt. Entwickler haben beim Erstellen von Webanwendungen in Python eine Vielzahl von Optionen, von Full-Stack-Frameworks wie Django und Pyramid über leichtgewichtige Mikroframeworks wie Flask und FastAPI bis hin zu speziellen Tools wie Streamlit für datenwissenschaftliche Anwendungen.

Vergleich von FastAPI, Flask und Streamlit für die Webentwicklung

In diesem Artikel vergleichen wir drei der beliebtesten Python-Web-Frameworks – FastAPI, Flask und Streamlit –, um Ihnen bei der Auswahl des richtigen Tools für Ihr Projekt zu helfen. Wir werden die Funktionen, Stärken und Schwächen jedes Frameworks untersuchen und die Anwendungsfälle hervorheben, in denen sie sich auszeichnen.

FastAPI

FastAPI ist ein modernes, schnelles (daher der Name) Webframework zum Erstellen von APIs mit Python 3.6+ basierend auf Standard-Python-Typhinweisen. Es nutzt die asynchronen Programmierfunktionen der Asyncio-Bibliothek von Python und die Leistung der Pydantic-Bibliothek für die Datenvalidierung und Serialisierung. FastAPI bietet automatische API-Dokumentation gemäß den OpenAPI-Standards, einschließlich Unterstützung für interaktive Dokumentation mit Swagger UI und ReDoc. Es bietet außerdem integrierte Unterstützung für die OAuth2-Authentifizierung und FastAPI-Abhängigkeiten für die Verwaltung gemeinsam genutzter Daten und Ressourcen.

Die Vorteile von FastAPI sind seine Geschwindigkeit, Benutzerfreundlichkeit und Unterstützung für asynchrone Programmierung. Es kann problemlos mit hoher Parallelität und hohem Durchsatz umgehen und eignet sich daher ideal für die Erstellung leistungsstarker APIs und Microservices. Die integrierte Unterstützung für Datenvalidierung und Serialisierung reduziert die Programmiermenge und verbessert die Codequalität. Die Dokumentationsfunktion von FastAPI erleichtert die Dokumentation der API und die Generierung von Client-Bibliotheken. ​

Flask

Flask ist ein leichtes, skalierbares und flexibles Python-Webframework, das einer Microservice-Architektur folgt. Es bietet eine einfache und intuitive API zum Erstellen von Webanwendungen mit minimalem Programmieraufwand. Flask basiert auf dem Werkzeug WSGI-Toolkit und der Jinja2-Templating-Engine. Es unterstützt auch Erweiterungen von Drittanbietern zum Hinzufügen von Funktionen, wie SQLAlchemy für den Datenbankzugriff, WTForms für die Formularvalidierung und Flask-RESTful für die Erstellung von RESTful-APIs.

Die Stärke von Flask liegt in seiner Einfachheit, Flexibilität und Skalierbarkeit. Es bietet eine Low-Level-API, die es Entwicklern ermöglicht, Anwendungen mit vollständiger Kontrolle über den Code zu erstellen. Das geringe Gewicht von Flask erleichtert die Erlernung und Verwendung, insbesondere bei kleinen und mittelgroßen Projekten. Seine Erweiterbarkeit

ermöglicht es Entwicklern, Bibliotheken und Plugins von Drittanbietern hinzuzufügen, um die Funktionalität ihrer Anwendungen zu verbessern.

Streamlit

Streamlit ist eine Python-Bibliothek zum Erstellen von Data-Science-Webanwendungen mit minimalem Programmieraufwand. Es bietet eine einfache und intuitive API zum Erstellen interaktiver und reaktionsfähiger Datenvisualisierungen, Dashboards und Modelle für maschinelles Lernen. Streamlit basiert auf dem Data-Science-Stack von Python, einschließlich NumPy, Pandas, Matplotlib und Scikit-learn. Es unterstützt auch Erweiterungen von Drittanbietern zum Hinzufügen von Funktionen, wie Streamlit-Altair für erweiterte Datenvisualisierung und Streamlit-Geopandas für die Verarbeitung von Geodaten.

Die Stärken von Streamlit sind seine Einfachheit, Interaktivität und der Fokus auf Datenwissenschaft. Es bietet eine High-Level-API, die es Entwicklern ermöglicht, Webanwendungen mit minimalem Programmieraufwand zu erstellen, insbesondere für datenwissenschaftliche Anwendungsfälle. Die Interaktivität von Streamlit ermöglicht Benutzern die Interaktion mit Datenvisualisierungen und Modellen für maschinelles Lernen in Echtzeit, was es zu einem idealen Werkzeug für die Datenexploration und das Experimentieren macht. Es konzentriert sich auf Datenwissenschaft und ermöglicht

Entwicklern die Nutzung der leistungsstarken Datenwissenschaftsbibliothek von Python zum Erstellen von Webanwendungen.

Funktionsvergleich

Um FastAPI, Flask und Streamlit zu vergleichen, verwenden wir die folgenden Kriterien:

    Geschwindigkeit und Leistung: Wie schnell und effizient ist das Framework?
  • Benutzerfreundlichkeit: Wie einfach ist es, das Framework zu erlernen und zu verwenden?
  • Dokumentation: Wie gut ist das Framework dokumentiert?
  • Erweiterbarkeit: Wie einfach ist es, Bibliotheken und Plugins von Drittanbietern hinzuzufügen?
  • Data Science-Funktionen: Wie gut unterstützt das Framework Data Science-Anwendungsfälle?
  • Geschwindigkeit und Leistung

FastAPI ist bekannt für seine Geschwindigkeit und Leistung, dank seiner Unterstützung für asynchrone Programmierung und der Pydantic-Bibliothek für Datenvalidierung und Serialisierung. Laut Benchmarks kann FastAPI bis zu 70.000 Anfragen pro Sekunde verarbeiten und ist damit eines der schnellsten verfügbaren Python-Webframeworks.

Flask ist auch für seine Geschwindigkeit und Leistung bekannt, obwohl es nicht so schnell wie FastAPI ist. Flask kann bis zu 5.000 Anfragen pro Sekunde verarbeiten, was für ein Mikroframework immer noch beeindruckend ist.

Streamlit ist nicht für leistungsstarke Webanwendungen konzipiert, sondern für interaktive Datenvisualisierung und datenwissenschaftliche Experimente. Es kann mäßigen Datenverkehr verarbeiten, ist jedoch nicht für die Verarbeitung großer Datenmengen oder hoher Parallelität optimiert.

Benutzerfreundlichkeit

FastAPI bietet eine moderne und intuitive API, die einfach zu verwenden ist, besonders geeignet für diejenigen, die mit Pythons Typhinweisen und vertraut sind Entwickler für asynchrone Programmierung. Die automatische API-Dokumentation und die integrierte Unterstützung für Datenvalidierung und Serialisierung von FastAPI reduzieren die Menge an Code, die geschrieben werden muss, und verbessern die Codequalität.

Die API von Flask ist einfach und leicht zu erlernen, selbst für Anfänger. Das minimalistische Design von Flask erleichtert die Verwendung für kleine bis mittelgroße Projekte.

Streamlit bietet eine benutzerfreundliche High-Level-API, die sich besonders für datenwissenschaftliche Anwendungsfälle eignet. Der Fokus von Streamlit auf Interaktivität und Reaktionsfähigkeit macht es einfach, interaktive Datenvisualisierungen und Modelle für maschinelles Lernen mit minimalem Programmieraufwand zu erstellen.

Dokumentation

Die Dokumentation von FastAPI ist gut organisiert und umfassend, mit detaillierten Beispielen und Tutorials. Die automatische API-Dokumentation von FastAPI wird mithilfe von OpenAPI-Standards generiert und umfasst Unterstützung für Swagger UI und ReDoc.

Die Dokumentation von Flask ist ebenfalls gut organisiert und umfassend, mit zahlreichen Erweiterungen und Tutorials von Drittanbietern. Die Dokumentation von Flask ist nicht so umfassend wie die von FastAPI, bietet aber dennoch reichlich Ressourcen zum Erlernen und Verwenden des Frameworks.

Die Dokumentation von Streamlit konzentriert sich auf datenwissenschaftliche Anwendungsfälle und bietet detaillierte Beispiele und Tutorials für die Erstellung interaktiver Datenvisualisierungen und Modelle für maschinelles Lernen. Die Dokumentation von Streamlit ist nicht so umfassend wie die von FastAPI oder Flask, bietet aber dennoch reichlich Ressourcen zum Erlernen und Verwenden des Frameworks.

Erweiterbarkeit

FastAPI unterstützt Bibliotheken und Plugins von Drittanbietern, um Funktionen wie Datenbanken, Authentifizierung und Test-Frameworks hinzuzufügen. Die integrierte Abhängigkeitsunterstützung von FastAPI erleichtert die Verwaltung gemeinsam genutzter Daten und Ressourcen.

Flasks Erweiterbarkeit ist eine seiner Stärken, mit einer Vielzahl von Erweiterungen von Drittanbietern zum Hinzufügen von Funktionen wie Datenbankzugriff, Formularvalidierung und RESTful-API-Entwicklung. Das minimalistische Design von Flask ermöglicht es Entwicklern, nur die Funktionalität hinzuzufügen, die sie benötigen.

Streamlit unterstützt auch Erweiterungen von Drittanbietern zum Hinzufügen von Funktionen, wie z. B. erweiterte Datenvisualisierung und Geodatenunterstützung. Der Fokus von Streamlit auf datenwissenschaftliche Anwendungsfälle begrenzt die Anzahl der verfügbaren Erweiterungen von Drittanbietern, es stehen jedoch immer noch reichlich Ressourcen für die Erstellung interaktiver Datenvisualisierungen und Modelle für maschinelles Lernen zur Verfügung.

Data Science-Funktionen

FastAPI bietet Unterstützung für asynchrone Programmierung sowie Datenvalidierung und -serialisierung mithilfe der Pydantic-Bibliothek. Obwohl FastAPI in datenwissenschaftlichen Anwendungen verwendet werden kann, ist es nicht speziell für diesen Anwendungsfall konzipiert.

Die Unterstützung von Flask für Data-Science-Anwendungen kommt von Erweiterungen von Drittanbietern wie SQLAlchemy für den Datenbankzugriff und Flask-RESTful für die Erstellung von RESTful-APIs. Flask ist nicht speziell für datenwissenschaftliche Anwendungsfälle konzipiert.

Streamlit wurde für datenwissenschaftliche Anwendungsfälle entwickelt und bietet integrierte Unterstützung für den Data-Science-Stack von Python, einschließlich NumPy, Pandas, Matplotlib und Scikit-learn. Die API von Streamlit ist darauf ausgelegt, interaktive Datenvisualisierungen und Modelle für maschinelles Lernen mit minimalem Programmieraufwand zu erstellen.

Fazit

FastAPI, Flask und Streamlit sind allesamt großartige Python-Frameworks für Webentwicklung und Datenwissenschaft. Jedes Framework hat je nach Anwendungsfall und Projektanforderungen seine Vor- und Nachteile.

FastAPI eignet sich am besten für leistungsstarke Webanwendungen, die asynchrone Programmierung sowie Datenvalidierung und -serialisierung unterstützen müssen. Die Geschwindigkeit und Leistung von FastAPI machen es zu einer ausgezeichneten Wahl für große Webanwendungen.

Flask eignet sich am besten für kleine bis mittelgroße Webanwendungen, die minimalistisches Design und Skalierbarkeit erfordern. Die Einfachheit und Benutzerfreundlichkeit von Flask machen es zu einer großartigen Wahl für Anfänger und Entwickler, die schnell Webanwendungen erstellen möchten.

Streamlit eignet sich am besten für datenwissenschaftliche Anwendungsfälle, die eine interaktive Datenvisualisierung und Modelle für maschinelles Lernen erfordern. Die High-Level-API und der Fokus auf Interaktivität und Reaktionsfähigkeit von Streamlit machen es zu einer ausgezeichneten Wahl für Datenwissenschaftler und Entwickler, die interaktive Datenvisualisierungen und Modelle für maschinelles Lernen mit minimalem Code erstellen möchten.

Letztendlich hängt die Wahl des Frameworks von den Projektanforderungen und den Entwicklerpräferenzen ab. FastAPI, Flask und Streamlit sind allesamt großartige Optionen für die Python-Webentwicklung und Datenwissenschaft.


Das obige ist der detaillierte Inhalt vonVergleich von FastAPI, Flask und Streamlit für die Webentwicklung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Muss MySQL bezahlen? Muss MySQL bezahlen? Apr 08, 2025 pm 05:36 PM

MySQL hat eine kostenlose Community -Version und eine kostenpflichtige Enterprise -Version. Die Community -Version kann kostenlos verwendet und geändert werden, die Unterstützung ist jedoch begrenzt und für Anwendungen mit geringen Stabilitätsanforderungen und starken technischen Funktionen geeignet. Die Enterprise Edition bietet umfassende kommerzielle Unterstützung für Anwendungen, die eine stabile, zuverlässige Hochleistungsdatenbank erfordern und bereit sind, Unterstützung zu bezahlen. Zu den Faktoren, die bei der Auswahl einer Version berücksichtigt werden, gehören Kritikalität, Budgetierung und technische Fähigkeiten von Anwendungen. Es gibt keine perfekte Option, nur die am besten geeignete Option, und Sie müssen die spezifische Situation sorgfältig auswählen.

So verwenden Sie MySQL nach der Installation So verwenden Sie MySQL nach der Installation Apr 08, 2025 am 11:48 AM

Der Artikel führt den Betrieb der MySQL -Datenbank vor. Zunächst müssen Sie einen MySQL -Client wie MySQLworkBench oder Befehlszeilen -Client installieren. 1. Verwenden Sie den Befehl mySQL-uroot-P, um eine Verbindung zum Server herzustellen und sich mit dem Stammkonto-Passwort anzumelden. 2. Verwenden Sie die Erstellung von Createdatabase, um eine Datenbank zu erstellen, und verwenden Sie eine Datenbank aus. 3.. Verwenden Sie CreateTable, um eine Tabelle zu erstellen, Felder und Datentypen zu definieren. 4. Verwenden Sie InsertInto, um Daten einzulegen, Daten abzufragen, Daten nach Aktualisierung zu aktualisieren und Daten nach Löschen zu löschen. Nur indem Sie diese Schritte beherrschen, lernen, mit gemeinsamen Problemen umzugehen und die Datenbankleistung zu optimieren, können Sie MySQL effizient verwenden.

Die MySQL -Download -Datei ist beschädigt und kann nicht installiert werden. Reparaturlösung Die MySQL -Download -Datei ist beschädigt und kann nicht installiert werden. Reparaturlösung Apr 08, 2025 am 11:21 AM

Die MySQL -Download -Datei ist beschädigt. Was soll ich tun? Wenn Sie MySQL herunterladen, können Sie die Korruption der Datei begegnen. Es ist heutzutage wirklich nicht einfach! In diesem Artikel wird darüber gesprochen, wie dieses Problem gelöst werden kann, damit jeder Umwege vermeiden kann. Nach dem Lesen können Sie nicht nur das beschädigte MySQL -Installationspaket reparieren, sondern auch ein tieferes Verständnis des Download- und Installationsprozesses haben, um zu vermeiden, dass Sie in Zukunft stecken bleiben. Lassen Sie uns zunächst darüber sprechen, warum das Herunterladen von Dateien beschädigt wird. Dafür gibt es viele Gründe. Netzwerkprobleme sind der Schuldige. Unterbrechung des Download -Prozesses und der Instabilität im Netzwerk kann zu einer Korruption von Dateien führen. Es gibt auch das Problem mit der Download -Quelle selbst. Die Serverdatei selbst ist gebrochen und natürlich auch unterbrochen, wenn Sie sie herunterladen. Darüber hinaus kann das übermäßige "leidenschaftliche" Scannen einer Antiviren -Software auch zu einer Beschädigung von Dateien führen. Diagnoseproblem: Stellen Sie fest, ob die Datei wirklich beschädigt ist

MySQL kann nach dem Herunterladen nicht installiert werden MySQL kann nach dem Herunterladen nicht installiert werden Apr 08, 2025 am 11:24 AM

Die Hauptgründe für den Fehler bei MySQL -Installationsfehlern sind: 1. Erlaubnisprobleme, Sie müssen als Administrator ausgeführt oder den Sudo -Befehl verwenden. 2. Die Abhängigkeiten fehlen, und Sie müssen relevante Entwicklungspakete installieren. 3. Portkonflikte müssen Sie das Programm schließen, das Port 3306 einnimmt, oder die Konfigurationsdatei ändern. 4. Das Installationspaket ist beschädigt. Sie müssen die Integrität herunterladen und überprüfen. 5. Die Umgebungsvariable ist falsch konfiguriert und die Umgebungsvariablen müssen korrekt entsprechend dem Betriebssystem konfiguriert werden. Lösen Sie diese Probleme und überprüfen Sie jeden Schritt sorgfältig, um MySQL erfolgreich zu installieren.

Lösungen für den Dienst, der nach der MySQL -Installation nicht gestartet werden kann Lösungen für den Dienst, der nach der MySQL -Installation nicht gestartet werden kann Apr 08, 2025 am 11:18 AM

MySQL hat sich geweigert, anzufangen? Nicht in Panik, lass es uns ausprobieren! Viele Freunde stellten fest, dass der Service nach der Installation von MySQL nicht begonnen werden konnte, und sie waren so ängstlich! Mach dir keine Sorgen, dieser Artikel wird dich dazu bringen, ruhig damit umzugehen und den Mastermind dahinter herauszufinden! Nachdem Sie es gelesen haben, können Sie dieses Problem nicht nur lösen, sondern auch Ihr Verständnis von MySQL -Diensten und Ihren Ideen zur Fehlerbehebungsproblemen verbessern und zu einem leistungsstärkeren Datenbankadministrator werden! Der MySQL -Dienst startete nicht und es gibt viele Gründe, von einfachen Konfigurationsfehlern bis hin zu komplexen Systemproblemen. Beginnen wir mit den häufigsten Aspekten. Grundkenntnisse: Eine kurze Beschreibung des Service -Startup -Prozesses MySQL Service Startup. Einfach ausgedrückt, lädt das Betriebssystem MySQL-bezogene Dateien und startet dann den MySQL-Daemon. Dies beinhaltet die Konfiguration

Braucht MySQL das Internet? Braucht MySQL das Internet? Apr 08, 2025 pm 02:18 PM

MySQL kann ohne Netzwerkverbindungen für die grundlegende Datenspeicherung und -verwaltung ausgeführt werden. Für die Interaktion mit anderen Systemen, Remotezugriff oder Verwendung erweiterte Funktionen wie Replikation und Clustering ist jedoch eine Netzwerkverbindung erforderlich. Darüber hinaus sind Sicherheitsmaßnahmen (wie Firewalls), Leistungsoptimierung (Wählen Sie die richtige Netzwerkverbindung) und die Datensicherung für die Verbindung zum Internet von entscheidender Bedeutung.

Wie optimieren Sie die MySQL-Leistung für Hochlastanwendungen? Wie optimieren Sie die MySQL-Leistung für Hochlastanwendungen? Apr 08, 2025 pm 06:03 PM

Die MySQL-Datenbankleistung Optimierungshandbuch In ressourcenintensiven Anwendungen spielt die MySQL-Datenbank eine entscheidende Rolle und ist für die Verwaltung massiver Transaktionen verantwortlich. Mit der Erweiterung der Anwendung werden jedoch die Datenbankleistung Engpässe häufig zu einer Einschränkung. In diesem Artikel werden eine Reihe effektiver Strategien zur Leistungsoptimierung von MySQL -Leistung untersucht, um sicherzustellen, dass Ihre Anwendung unter hohen Lasten effizient und reaktionsschnell bleibt. Wir werden tatsächliche Fälle kombinieren, um eingehende Schlüsseltechnologien wie Indexierung, Abfrageoptimierung, Datenbankdesign und Caching zu erklären. 1. Das Design der Datenbankarchitektur und die optimierte Datenbankarchitektur sind der Eckpfeiler der MySQL -Leistungsoptimierung. Hier sind einige Kernprinzipien: Die Auswahl des richtigen Datentyps und die Auswahl des kleinsten Datentyps, der den Anforderungen entspricht, kann nicht nur Speicherplatz speichern, sondern auch die Datenverarbeitungsgeschwindigkeit verbessern.

So optimieren Sie die Datenbankleistung nach der MySQL -Installation So optimieren Sie die Datenbankleistung nach der MySQL -Installation Apr 08, 2025 am 11:36 AM

Die MySQL -Leistungsoptimierung muss von drei Aspekten beginnen: Installationskonfiguration, Indexierung und Abfrageoptimierung, Überwachung und Abstimmung. 1. Nach der Installation müssen Sie die my.cnf -Datei entsprechend der Serverkonfiguration anpassen, z. 2. Erstellen Sie einen geeigneten Index, um übermäßige Indizes zu vermeiden und Abfrageanweisungen zu optimieren, z. B. den Befehl Erklärung zur Analyse des Ausführungsplans; 3. Verwenden Sie das eigene Überwachungstool von MySQL (ShowProcessList, Showstatus), um die Datenbankgesundheit zu überwachen und die Datenbank regelmäßig zu sichern und zu organisieren. Nur durch kontinuierliche Optimierung dieser Schritte kann die Leistung der MySQL -Datenbank verbessert werden.

See all articles