Inhaltsverzeichnis
UniMC (ein neuer Modellphänotyp)
UniMC-Leistung
Heim Technologie-Peripheriegeräte KI Das IDEA Fengshen List-Team hat das unmögliche Dreieck durchbrochen und mit 540 Milliarden Modellen konkurriert und nur mit 200 Millionen Modellen Zero-Sample-Learning-SOTA erreicht

Das IDEA Fengshen List-Team hat das unmögliche Dreieck durchbrochen und mit 540 Milliarden Modellen konkurriert und nur mit 200 Millionen Modellen Zero-Sample-Learning-SOTA erreicht

Apr 09, 2023 pm 01:31 PM
参数 模型

Seit der Einführung von GPT-3, das die Leistungsfähigkeit von Hunderten Milliarden Modellen demonstrierte, stehen NLP-Aufgaben vor dem unmöglichen Dreieck aus Maßstab, Beispielen und Feinabstimmungsleistung. Wie kann ein Sprachmodell mit weniger als 1 Milliarde Parametern die Few-Shot- (oder sogar Zero-Shot-) und Fine-Tuning-Leistung von SOTA erreichen? Müssen wir Hunderte Milliarden Parameter haben und instabile Eingabeaufforderungen ertragen, um das Zero-Shot-Szenario zu lösen? In diesem Artikel stellt das Team des IDEA Research Institute Fengshenbang einen neuen „phänomenologischen“ UniMC vor, der mit nur 200 Millionen Parametern Zero-Shot-SOTA erreichen kann. Verwandte Arbeiten wurden von EMNLP 2022 angenommen.

hat dieses Jahr in einem Artikel [1] darauf hingewiesen, dass es seit dem Vorschlag der Pre-Training-Technologie ein unmögliches Dreieck in der NLP-Welt gibt (wie in Abbildung 1 unten dargestellt), das heißt, ein Modell kann nicht gleichzeitig Folgendes erfüllen:

  1. Mittlere Modellgröße (weniger als 1 Milliarde);
  2. SOTAs Few-Shot-Leistung (oder sogar Zero-Shot-Leistung);
  3. SOTAs Fine-Tuning-Leistung.

Das IDEA Fengshen List-Team hat das unmögliche Dreieck durchbrochen und mit 540 Milliarden Modellen konkurriert und nur mit 200 Millionen Modellen Zero-Sample-Learning-SOTA erreicht

Abbildung 1

Der Grund, warum das unmögliche Dreieck existiert, liegt darin, dass die Anzahl der Parameter des aktuellen vorab trainierten Modells nur eine bestimmte Größenordnung erreicht und das Lernen mithilfe von Hinweisen widerspiegeln kann die kraftvolle Wenig/Null-Schuss-Leistung.

Das kürzlich von unserem Fengshenbang-Team veröffentlichte und in EMNLP 2022 aufgenommene Papier: „Zero-Shot Learners for Natural Language Understanding via a Unified Multiple Choice Perspective“ bricht diesen „Fluch“ und bietet eine flexible und effiziente Lösung. Der in unserem -Artikel vorgeschlagene UniMC verfügt über eine sehr geringe Anzahl von Modellparametern (nur 100 Millionen Stufen) und die Feinabstimmungsfähigkeiten von SOTA. Er verfügt auch über die Few/Zero-Leistung von SOTA (vergleichbar mit der 540-Milliarden-PaLM-Leistung). .

Das IDEA Fengshen List-Team hat das unmögliche Dreieck durchbrochen und mit 540 Milliarden Modellen konkurriert und nur mit 200 Millionen Modellen Zero-Sample-Learning-SOTA erreicht

  • Papieradresse: https://arxiv.org/abs/2210.08590
  • Modell-Open-Source-Adresse: https://github.com/IDEA-CCNL/Fengshenbang - LM/tree/main/fengshen/examples/unimc/
  • Technischer Hintergrund

Die Einführung von BERT im Jahr 2018 markierte, dass der gesamte NLP-Bereich in eine Ära vor dem Training eingetreten ist und NLP endlich eine weitere Ära erreicht hat Schritt nach vorn. Bestehende Modelle wie DeBERTa und andere vorab trainierte maskierte Sprachmodelle (PMLM) können bereits eine SOTA-Feinabstimmung mit Parametern unter 1 Milliarde erreichen, sind jedoch schwach, wenn sie NLU-Aufgaben in Zero-Shot-Szenarien bewältigen müssen.

Der Grund dafür ist, dass wir bei der Verwendung von PMLM für bestimmte Aufgaben eine MLP-Schicht darüber hinzufügen müssen, wie in Abbildung 2(c) dargestellt. Darüber hinaus fügt diese MLP-Schicht zusätzliche Parameter hinzu, was dazu führt, dass diese Methode bei Zero-Shot-Szenarien nur eine zufällige Initialisierung wählt und es keine Möglichkeit gibt, eine vernünftige Ausgabe zu erhalten. Darüber hinaus macht das Hinzufügen einer MLP-Schicht im Feinabstimmungsszenario auch die Übertragung zwischen verschiedenen Aufgaben unmöglich (z. B. ist die Übertragung zwischen 2-Klassifizierungs- und 3-Klassifizierungsaufgaben unmöglich).

Für Zero-Shot-Szenarien besteht der gängige Ansatz in den letzten Jahren darin, Dutzende oder sogar Hunderte Milliarden vorab trainierter Sprachmodelle (PLM) zu verwenden, um NLU-Aufgaben einheitlich in Textgenerierungsaufgaben umzuwandeln. Auf diese Weise können Eingabeaufforderungen erstellt werden manuell oder manuell erstellt werden. Der Verbalisierer ist so konzipiert, dass große Modelle auf Zero-Shot-Aufgaben angewendet werden können, wie in Abbildung 2(a) dargestellt. Darüber hinaus wird im FLAN-Papier eine große Anzahl künstlich konstruierter Vorlagen verwendet, um verschiedene Aufgaben zu vereinheitlichen, sodass das Wissen anderer Aufgaben auf bestimmte Aufgaben übertragen werden kann, wie in Abbildung 2 (b) dargestellt. Ein solches generatives Modell hat jedoch folgende Nachteile:

  • Das Generieren des Modells erfordert die Generierung eines Verbalisierers (Bezeichnungsbeschreibung), und unterschiedliche Verbalisierer führen normalerweise zu großen Leistungsunterschieden.
  • Eingabeaufforderungen müssen ebenfalls manuell entworfen werden, und unterschiedliche Eingabeaufforderungen wirken sich stark auf die Leistung aus . Hat großen Einfluss auf die Wirkung nachgelagerter Aufgaben.
  • Beim Ableiten erfordert das generative Modell eine langsame Autoregression. Und es ist im Allgemeinen unidirektional und kann keine bidirektionalen Informationen wie BERT erhalten.
  • Um eine Wenig-/Null-Schuss-Leistung sicherzustellen, ist die Anzahl der generierten Modellparameter oft groß und erreicht 175 Milliarden für GPT-3 oder 540 Milliarde für PaLM ;
  • Obwohl durch die Optimierung der Anweisungen von FLAN Wissen von anderen Aufgaben auf bestimmte Aufgaben übertragen werden kann, sind für die Bewältigung anderer Aufgaben neue Schulungen erforderlich. Wenn Sie beispielsweise A bewerten, müssen Sie auf BCDE trainieren; bei der Bewertung von B müssen Sie auf ACDE trainieren.

Und wir haben in Abbildung 2(d) die UniMC-Methode vorgeschlagen, die die oben genannten Probleme vermeidet und bei mehreren chinesischen und englischen Aufgaben SOTA oder eine ähnliche Leistung wie die fortschrittlichsten Modelle erreicht.

Das IDEA Fengshen List-Team hat das unmögliche Dreieck durchbrochen und mit 540 Milliarden Modellen konkurriert und nur mit 200 Millionen Modellen Zero-Sample-Learning-SOTA erreicht

Abbildung 2

UniMC (ein neuer Modellphänotyp)

Modellidee

Die meisten NLU-Aufgaben basieren zweifellos auf Etiketten erhöhen die Schwierigkeit der Aufgabe und die Lernkosten des Modells. Bei vielen etikettenbasierten Aufgaben ist es in der Regel nur erforderlich, den Eingabetext und die Wahrscheinlichkeit anzugeben, dass der Ausgabetext zu jedem Etikett gehört. Basierend auf dieser Idee transformieren wir die NLU-Aufgabe in eine Multiple-Choice-Aufgabe (Multiple-Choice). Das heißt, bei gegebenem Text, Fragen und Optionen wird die Wahrscheinlichkeit jeder Option ausgegeben, ohne die Optionen zu generieren.

Auf dieser Grundlage schlagen wir ein neues Konzept vor: Phänomen des Modells. Vorhandene Modellausdrücke fügen später immer eine bestimmte Ebene hinzu, beispielsweise eine Klassifizierungsebene. Alternativ besteht der Phänotyp des generierten Modell-GPT darin, das Wissen des Modells über Prompt zu ermitteln. Die von uns vorgeschlagene UniMC-Lösung erfordert keine Einführung zusätzlicher Schichten in PMLM und nutzt einen anderen Phänotyp von PMLM.

In diesem Artikel wählen wir ALBERT als unser Backbone-PMLM-Netzwerk.

Einheitliches Multiple-Choice-Format

Wie in Abbildung 3 gezeigt, hoffen wir, alle labelbasierten NLU-Aufgaben in ein einheitliches MC-Format (Multiple-Choice) umzuwandeln. Unsere Philosophie besteht darin, so wenig menschliche Informationen wie möglich hinzuzufügen.

Das IDEA Fengshen List-Team hat das unmögliche Dreieck durchbrochen und mit 540 Milliarden Modellen konkurriert und nur mit 200 Millionen Modellen Zero-Sample-Learning-SOTA erreicht

Abbildung 3

Im Einzelnen haben wir die folgenden zwei Schritte durchgeführt:

  • Bezeichnung in Option ändern;
  • Wählen Sie, ob eine Frageaufforderung hinzugefügt werden soll (im Grunde kommt die Frage). aus der Beschreibung des Datensatzes).

Vorteile: Es ist nur eine Optionsaufforderung und eine oder keine Frageaufforderung entworfen.

Modellstruktur

Die Struktur von UniMC ist in Abbildung 4 unten dargestellt, die eine automatische Kodierungsstruktur ähnlich BERT verwendet. Der Hauptprozess besteht darin, dass wir zunächst die Eingaben verschiedener Aufgaben vereinheitlichen und den Fluss der Eingabeinformationen begrenzen. Nach PMLM verwenden wir O-MLM, OP und MLM für das MC-Training und schließlich O-MLM und OP für die Null-Schuss-Vorhersage . Als nächstes werde ich unsere Lösung Schritt für Schritt aufschlüsseln.

Das IDEA Fengshen List-Team hat das unmögliche Dreieck durchbrochen und mit 540 Milliarden Modellen konkurriert und nur mit 200 Millionen Modellen Zero-Sample-Learning-SOTA erreicht

Bild 4

#🎜 🎜# Geben Sie Eingabe

ein, wie in Abbildung 5 gezeigt, der Inhalt des roten durchgezogenen Feldbereichs. Vor der Eingabe in UniMC muss es verarbeitet und in das einzigartige Token-Format von UniMC umgewandelt werden. Um die Berechnungseffizienz zu verbessern, verbinden wir alle Optionen direkt mit Fragen und Text, also [Optionen, Frage, Passage]. Und wir fügen vor jeder Option ein spezielles Token ein, [O-MASK], um Ja oder Nein anzuzeigen (diese Option auswählen oder nicht). (Beachten Sie, dass wir zur Verbesserung der Wiederverwendbarkeit das [MASK]-Token wiederverwendet haben.

Wie in Abbildung 5 gezeigt, der Inhalt des grün gepunkteten Kästchenbereichs. Wir brauchen Um die Eingabeinformationsquelle zu berücksichtigen, gibt es Optionsinformationen, Frageninformationen und Textsegmentinformationen. Die Informationen zwischen ihnen wirken sich gegenseitig aus. Daher möchten wir unterschiedliche Informationen isolieren. Wenn wir bei der Eingabe andere Optionen sehen können, dann diese Frage Der Schwierigkeitsgrad wird sinken und das Modell wird träge sein. Verwenden Sie die Segment-ID, um dem Modell mitzuteilen, dass die Option und die Kontextinformationen (Frage, Passage) unterschiedlich sind verschiedene Optionen gleichermaßen Positionsinformationen;

Ändern Sie die Aufmerksamkeitsmaskenmatrix, um zu verhindern, dass das Modell die Informationen verschiedener Optionen sieht, was dazu führt, dass das Modell träge wird #

  • Bild 5
  • #🎜🎜 #Wie funktioniert das Modell: Multiple-Choice-Fragen? (O-MLM und OP) Die Antwort „Auswählen“ des Modells wird vollständig vom MASK-Token geerbt (insbesondere, um keine zusätzlichen Parameter hinzuzufügen und das vom Modell in der unbeaufsichtigten Vortrainingsphase erlernte Wissen vollständig zu nutzen, verwenden wir es wieder). Der einzige Unterschied besteht darin, dass er zu 100 % maskiert ist. Das Ziel der O-MLM-Aufgabe besteht darin, O-MASK in „Ja“ oder „Nein“ zu dekodieren, was zur Vorhersage der Option verwendet wird ausgewählt ist. 🎜#
  • Die Rolle der OP-Aufgabe besteht darin, die Antwort aus dem „Ja“ jeder Option vorherzusagen. Insbesondere nehmen wir das Logit der „Ja“-Ausgabe jeder [O-. MASKE] und führen Sie Softmax aus, um die Wahrscheinlichkeit für jede Option zu ermitteln. Wählen Sie die Option mit der höchsten Wahrscheinlichkeit als vorhergesagte Antwort aus. Verarbeitung mehrerer MC-Aufgaben in einem Batch
#🎜🎜 #

Wie in Abbildung 7 gezeigt, hoffen wir, mehrere MC-Datensätze in einem Batch zusammenzufassen kann die Fähigkeiten des Modells verbessern und es einheitlicher machen. Als wir den Stapel erstellten, stellten wir ein Problem fest: Was passiert, wenn ein Stapel Proben mit unterschiedlichen Optionen enthält? Das IDEA Fengshen List-Team hat das unmögliche Dreieck durchbrochen und mit 540 Milliarden Modellen konkurriert und nur mit 200 Millionen Modellen Zero-Sample-Learning-SOTA erreicht

Also haben wir vor der Ausgabe eine Logit-Maskenmethode entworfen. Indem wir irrelevanten Token direkt einen negativen, unendlich vorhergesagten Wert zuweisen und diese addieren, können wir den Einfluss anderer Token auf O-MASK bei der Berechnung von Softmax eliminieren. Darüber hinaus können unterschiedlich viele Multiple-Choice-Fragen einheitlich in einem Stapel bearbeitet werden.

Bild 7

#🎜 🎜 #Modelltraining und Vorhersage

MC-Training

Das IDEA Fengshen List-Team hat das unmögliche Dreieck durchbrochen und mit 540 Milliarden Modellen konkurriert und nur mit 200 Millionen Modellen Zero-Sample-Learning-SOTA erreicht

Im Gegensatz zum Instruction Tuning von FLAN trainieren wir hauptsächlich anhand des MC-Datensatzes. Dies dient hauptsächlich dazu, dem Modell das Erlernen von Multiple-Choice-Fragen zu ermöglichen, und der MC-Datensatz weist beispielsweise ein gewisses Maß an Vielseitigkeit auf Datensätze können durch die Anzahl der ungleichen Etiketten bestimmt werden.

Das IDEA Fengshen List-Team hat das unmögliche Dreieck durchbrochen und mit 540 Milliarden Modellen konkurriert und nur mit 200 Millionen Modellen Zero-Sample-Learning-SOTA erreicht

Abbildung 8

Zero-Shot-Inferenz

Interessanterweise können wir feststellen, dass diese beiden Aufgaben in zwei Phasen ausgeführt werden können: Training und Zero-Shot-Inferenz haben Konsistenz. Dies liegt daran, dass wir zwei Aufgaben, O-MLM und OP, verwenden, damit das Modell Multiple-Choice-Fragen beantworten kann. Und da wir die Klassifizierungsebene aufgegeben haben, können alle Parameter wiederverwendet werden, wodurch die Zero-Shot-Fähigkeit von PMLM aktiviert wird.

Das IDEA Fengshen List-Team hat das unmögliche Dreieck durchbrochen und mit 540 Milliarden Modellen konkurriert und nur mit 200 Millionen Modellen Zero-Sample-Learning-SOTA erreicht

Abbildung 9

UniMC-Leistung

Englisches Szenario

Wir haben 14 Multiple-Choice-Aufgaben für das Vortraining gesammelt und dann andere NLU-Aufgaben für Zero-Shot durchgeführt Leistungstests. In 4 NLI-Aufgaben erreicht UniMC SOTA und übertrifft das PaLM-Modell mit 540 Milliarden Parametern.

Das IDEA Fengshen List-Team hat das unmögliche Dreieck durchbrochen und mit 540 Milliarden Modellen konkurriert und nur mit 200 Millionen Modellen Zero-Sample-Learning-SOTA erreicht

Abbildung 10

Und wir schlagen das Netzwerk mit GPT-2 und GPT-3 als Rückgrat bei der Klassifizierungsaufgabe. Für die sehr schwierige Dbpedia-Aufgabe, bis zu 13 Kategorien, kann sogar eine ultrahohe Genauigkeit von 88,9 % erreicht werden.

Das IDEA Fengshen List-Team hat das unmögliche Dreieck durchbrochen und mit 540 Milliarden Modellen konkurriert und nur mit 200 Millionen Modellen Zero-Sample-Learning-SOTA erreicht

Abbildung 11

Um die Verallgemeinerung von UNIMC zu untersuchen, haben wir es mit FLAN verglichen. Wie man sieht, kann unser UniMC FLAN in fast allen Aufgaben übertreffen oder ihm nahekommen. Abbildung 12 Abbildung 12 Chinesische Szene -Trainieren und testen Sie dann 9 Aufgaben von FewCLUE und ZeroCLUE. Zum 30. August 2022 hat

UniMC sowohl in der FewCLUE- als auch in der ZeroCLUE-Liste den ersten Platz erreicht

Das IDEA Fengshen List-Team hat das unmögliche Dreieck durchbrochen und mit 540 Milliarden Modellen konkurriert und nur mit 200 Millionen Modellen Zero-Sample-Learning-SOTA erreicht (Erlangshen im Bild – UnifiedMC ist UniMC).

Abbildung 13

Abbildung 14

Das IDEA Fengshen List-Team hat das unmögliche Dreieck durchbrochen und mit 540 Milliarden Modellen konkurriert und nur mit 200 Millionen Modellen Zero-Sample-Learning-SOTA erreichtFazit: Wir haben einen Roman vorgeschlagen. Zero-Shot Lösungen für NLU-Aufgaben in Szenarien, nur mit Hunderten von Millionen von Parametern kann ein komplexes großes Modell mit der tausendfachen Anzahl von Parametern zunichte machen.

Außerdem führen wir kaum künstliche Informationen ein. Und es überwindet das Problem der Inkonsistenz zwischen Vortraining und Feinabstimmung von BERT-Modellen, und unser Training und unsere Vorhersage sind konsistent. Wir können sogar ein Training und mehrere Zero-Shot-Vorhersagen durchführen, was die Kosten für Rechenleistung erheblich spart. Derzeit hat das IDEA Fengshenban-Team mehr als 70 vorab trainierte große Modelle auf den Markt gebracht.

  • Modell: https://huggingface.co/IDEA-CCNL
  • Fengshenbang Gesamtpapier (zweisprachig auf Chinesisch und Englisch): https://arxiv.org/abs/2209.02970
  • Fengshenbang-Homepage: https://github.com/IDEA-CCNL/Fengshenbang-LM

Zitat

[1]Unmögliches Dreieck: Was kommt als nächstes für vorab trainierte Sprachmodelle?https: / /readpaper.com/paper/4612531641570566145

Das obige ist der detaillierte Inhalt vonDas IDEA Fengshen List-Team hat das unmögliche Dreieck durchbrochen und mit 540 Milliarden Modellen konkurriert und nur mit 200 Millionen Modellen Zero-Sample-Learning-SOTA erreicht. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Crossplay haben?
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Das weltweit leistungsstärkste Open-Source-MoE-Modell ist da, mit chinesischen Fähigkeiten, die mit GPT-4 vergleichbar sind, und der Preis beträgt nur fast ein Prozent von GPT-4-Turbo Das weltweit leistungsstärkste Open-Source-MoE-Modell ist da, mit chinesischen Fähigkeiten, die mit GPT-4 vergleichbar sind, und der Preis beträgt nur fast ein Prozent von GPT-4-Turbo May 07, 2024 pm 04:13 PM

Stellen Sie sich ein Modell der künstlichen Intelligenz vor, das nicht nur die Fähigkeit besitzt, die traditionelle Datenverarbeitung zu übertreffen, sondern auch eine effizientere Leistung zu geringeren Kosten erzielt. Dies ist keine Science-Fiction, DeepSeek-V2[1], das weltweit leistungsstärkste Open-Source-MoE-Modell, ist da. DeepSeek-V2 ist ein leistungsstarkes MoE-Sprachmodell (Mix of Experts) mit den Merkmalen eines wirtschaftlichen Trainings und einer effizienten Inferenz. Es besteht aus 236B Parametern, von denen 21B zur Aktivierung jedes Markers verwendet werden. Im Vergleich zu DeepSeek67B bietet DeepSeek-V2 eine stärkere Leistung, spart gleichzeitig 42,5 % der Trainingskosten, reduziert den KV-Cache um 93,3 % und erhöht den maximalen Generierungsdurchsatz auf das 5,76-fache. DeepSeek ist ein Unternehmen, das sich mit allgemeiner künstlicher Intelligenz beschäftigt

KI untergräbt die mathematische Forschung! Der Gewinner der Fields-Medaille und der chinesisch-amerikanische Mathematiker führten 11 hochrangige Arbeiten an | Gefällt mir bei Terence Tao KI untergräbt die mathematische Forschung! Der Gewinner der Fields-Medaille und der chinesisch-amerikanische Mathematiker führten 11 hochrangige Arbeiten an | Gefällt mir bei Terence Tao Apr 09, 2024 am 11:52 AM

KI verändert tatsächlich die Mathematik. Vor kurzem hat Tao Zhexuan, der diesem Thema große Aufmerksamkeit gewidmet hat, die neueste Ausgabe des „Bulletin of the American Mathematical Society“ (Bulletin der American Mathematical Society) weitergeleitet. Zum Thema „Werden Maschinen die Mathematik verändern?“ äußerten viele Mathematiker ihre Meinung. Der gesamte Prozess war voller Funken, knallhart und aufregend. Der Autor verfügt über eine starke Besetzung, darunter der Fields-Medaillengewinner Akshay Venkatesh, der chinesische Mathematiker Zheng Lejun, der NYU-Informatiker Ernest Davis und viele andere bekannte Wissenschaftler der Branche. Die Welt der KI hat sich dramatisch verändert. Viele dieser Artikel wurden vor einem Jahr eingereicht.

Google ist begeistert: JAX-Leistung übertrifft Pytorch und TensorFlow! Es könnte die schnellste Wahl für das GPU-Inferenztraining werden Google ist begeistert: JAX-Leistung übertrifft Pytorch und TensorFlow! Es könnte die schnellste Wahl für das GPU-Inferenztraining werden Apr 01, 2024 pm 07:46 PM

Die von Google geförderte Leistung von JAX hat in jüngsten Benchmark-Tests die von Pytorch und TensorFlow übertroffen und belegt bei 7 Indikatoren den ersten Platz. Und der Test wurde nicht auf der TPU mit der besten JAX-Leistung durchgeführt. Obwohl unter Entwicklern Pytorch immer noch beliebter ist als Tensorflow. Aber in Zukunft werden möglicherweise mehr große Modelle auf Basis der JAX-Plattform trainiert und ausgeführt. Modelle Kürzlich hat das Keras-Team drei Backends (TensorFlow, JAX, PyTorch) mit der nativen PyTorch-Implementierung und Keras2 mit TensorFlow verglichen. Zunächst wählen sie eine Reihe von Mainstream-Inhalten aus

Hallo, elektrischer Atlas! Der Boston Dynamics-Roboter erwacht wieder zum Leben, seltsame 180-Grad-Bewegungen machen Musk Angst Hallo, elektrischer Atlas! Der Boston Dynamics-Roboter erwacht wieder zum Leben, seltsame 180-Grad-Bewegungen machen Musk Angst Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas tritt offiziell in die Ära der Elektroroboter ein! Gestern hat sich der hydraulische Atlas einfach „unter Tränen“ von der Bühne der Geschichte zurückgezogen. Heute gab Boston Dynamics bekannt, dass der elektrische Atlas im Einsatz ist. Es scheint, dass Boston Dynamics im Bereich kommerzieller humanoider Roboter entschlossen ist, mit Tesla zu konkurrieren. Nach der Veröffentlichung des neuen Videos wurde es innerhalb von nur zehn Stunden bereits von mehr als einer Million Menschen angesehen. Die alten Leute gehen und neue Rollen entstehen. Das ist eine historische Notwendigkeit. Es besteht kein Zweifel, dass dieses Jahr das explosive Jahr der humanoiden Roboter ist. Netizens kommentierten: Die Weiterentwicklung der Roboter hat dazu geführt, dass die diesjährige Eröffnungsfeier wie Menschen aussieht, und der Freiheitsgrad ist weitaus größer als der von Menschen. Aber ist das wirklich kein Horrorfilm? Zu Beginn des Videos liegt Atlas ruhig auf dem Boden, scheinbar auf dem Rücken. Was folgt, ist atemberaubend

KAN, das MLP ersetzt, wurde durch Open-Source-Projekte auf Faltung erweitert KAN, das MLP ersetzt, wurde durch Open-Source-Projekte auf Faltung erweitert Jun 01, 2024 pm 10:03 PM

Anfang dieses Monats schlugen Forscher des MIT und anderer Institutionen eine vielversprechende Alternative zu MLP vor – KAN. KAN übertrifft MLP in Bezug auf Genauigkeit und Interpretierbarkeit. Und es kann MLP, das mit einer größeren Anzahl von Parametern ausgeführt wird, mit einer sehr kleinen Anzahl von Parametern übertreffen. Beispielsweise gaben die Autoren an, dass sie KAN nutzten, um die Ergebnisse von DeepMind mit einem kleineren Netzwerk und einem höheren Automatisierungsgrad zu reproduzieren. Konkret verfügt DeepMinds MLP über etwa 300.000 Parameter, während KAN nur etwa 200 Parameter hat. KAN hat eine starke mathematische Grundlage wie MLP und basiert auf dem universellen Approximationssatz, während KAN auf dem Kolmogorov-Arnold-Darstellungssatz basiert. Wie in der folgenden Abbildung gezeigt, hat KAN

Tesla-Roboter arbeiten in Fabriken, Musk: Der Freiheitsgrad der Hände wird dieses Jahr 22 erreichen! Tesla-Roboter arbeiten in Fabriken, Musk: Der Freiheitsgrad der Hände wird dieses Jahr 22 erreichen! May 06, 2024 pm 04:13 PM

Das neueste Video von Teslas Roboter Optimus ist veröffentlicht und er kann bereits in der Fabrik arbeiten. Bei normaler Geschwindigkeit sortiert es Batterien (Teslas 4680-Batterien) so: Der Beamte hat auch veröffentlicht, wie es bei 20-facher Geschwindigkeit aussieht – auf einer kleinen „Workstation“, pflücken und pflücken und pflücken: Dieses Mal wird es freigegeben. Eines der Highlights Der Vorteil des Videos besteht darin, dass Optimus diese Arbeit in der Fabrik völlig autonom und ohne menschliches Eingreifen während des gesamten Prozesses erledigt. Und aus Sicht von Optimus kann es auch die krumme Batterie aufnehmen und platzieren, wobei der Schwerpunkt auf der automatischen Fehlerkorrektur liegt: In Bezug auf die Hand von Optimus gab der NVIDIA-Wissenschaftler Jim Fan eine hohe Bewertung ab: Die Hand von Optimus ist der fünffingrige Roboter der Welt am geschicktesten. Seine Hände sind nicht nur taktil

FisheyeDetNet: der erste Zielerkennungsalgorithmus basierend auf einer Fischaugenkamera FisheyeDetNet: der erste Zielerkennungsalgorithmus basierend auf einer Fischaugenkamera Apr 26, 2024 am 11:37 AM

Die Zielerkennung ist ein relativ ausgereiftes Problem in autonomen Fahrsystemen, wobei die Fußgängererkennung einer der ersten Algorithmen ist, die eingesetzt werden. In den meisten Arbeiten wurde eine sehr umfassende Recherche durchgeführt. Die Entfernungswahrnehmung mithilfe von Fischaugenkameras für die Rundumsicht ist jedoch relativ wenig untersucht. Aufgrund der großen radialen Verzerrung ist es schwierig, die standardmäßige Bounding-Box-Darstellung in Fischaugenkameras zu implementieren. Um die obige Beschreibung zu vereinfachen, untersuchen wir erweiterte Begrenzungsrahmen-, Ellipsen- und allgemeine Polygondesigns in Polar-/Winkeldarstellungen und definieren eine mIOU-Metrik für die Instanzsegmentierung, um diese Darstellungen zu analysieren. Das vorgeschlagene Modell „fisheyeDetNet“ mit polygonaler Form übertrifft andere Modelle und erreicht gleichzeitig 49,5 % mAP auf dem Valeo-Fisheye-Kameradatensatz für autonomes Fahren

Das Neueste von der Universität Oxford! Mickey: 2D-Bildabgleich in 3D SOTA! (CVPR\'24) Das Neueste von der Universität Oxford! Mickey: 2D-Bildabgleich in 3D SOTA! (CVPR\'24) Apr 23, 2024 pm 01:20 PM

Projektlink vorne geschrieben: https://nianticlabs.github.io/mickey/ Anhand zweier Bilder kann die Kameraposition zwischen ihnen geschätzt werden, indem die Korrespondenz zwischen den Bildern hergestellt wird. Normalerweise handelt es sich bei diesen Entsprechungen um 2D-zu-2D-Entsprechungen, und unsere geschätzten Posen sind maßstabsunabhängig. Einige Anwendungen, wie z. B. Instant Augmented Reality jederzeit und überall, erfordern eine Posenschätzung von Skalenmetriken und sind daher auf externe Tiefenschätzer angewiesen, um die Skalierung wiederherzustellen. In diesem Artikel wird MicKey vorgeschlagen, ein Keypoint-Matching-Prozess, mit dem metrische Korrespondenzen im 3D-Kameraraum vorhergesagt werden können. Durch das Erlernen des 3D-Koordinatenabgleichs zwischen Bildern können wir auf metrische Relativwerte schließen

See all articles