Inhaltsverzeichnis
Conda erstellt eine virtuelle Python-Umgebung.
1. Installieren Sie Anaconda.
2.Häufig verwendete Befehle in Conda
3“. Python erstellt eine virtuelle Umgebung. Der Befehl „Anaconda“ erstellt eine virtuelle Umgebung mit der Python-Version x.x und nennt sie „Ihr_Umgebungsname“. Die Datei Your_env_name befindet sich unter der envs-Datei im Anaconda-Installationsverzeichnis.
Öffnen Sie die Befehlszeile und geben Sie python --version ein, um die aktuelle Python-Version zu überprüfen.
6. Schließen Sie die virtuelle Umgebung Umgebung
8. Löschen Sie ein bestimmtes Paket in der Umgebungsuhr
Der Server von http://Anaconda.org befindet sich im Ausland. Bei der Installation mehrerer Pakete ist die Conda-Download-Geschwindigkeit häufig sehr langsam. Die Tsinghua TUNA-Spiegelquelle verfügt über den Spiegel des Anaconda-Warehouses. Fügen Sie ihn einfach zur Conda-Konfiguration hinzu:
10. Stellen Sie den Standardspiegel wieder her
Installieren Sie PySpark
Eine wichtige Sache ist, zunächst sicherzustellen, dass Java auf Ihrem Computer installiert ist. Anschließend können Sie PySpark auf Ihrem Jupyter-Notebook ausführen.
Dieser Datensatz ist großartig, ohne dass Werte fehlen.
不必要的列丢弃
特征转换为向量
训练和测试拆分
机器学习模型构建
随机森林分类器
评估随机森林分类器模型
决策树分类器
评估决策树模型
逻辑回归模型
梯度提升树分类器模型
结论
Heim Technologie-Peripheriegeräte KI ​Erstellen Sie Modelle für maschinelles Lernen mit PySpark ML

​Erstellen Sie Modelle für maschinelles Lernen mit PySpark ML

Apr 09, 2023 pm 01:51 PM
机器学习 数据分析 pyspark m

​Spark ist ein Open-Source-Framework, das für interaktive Abfragen, maschinelles Lernen und Echtzeit-Workloads entwickelt wurde, und PySpark ist eine Bibliothek für Python, die Spark verwendet.

PySpark ist eine hervorragende Sprache für die Durchführung explorativer Datenanalysen im großen Maßstab, den Aufbau von Pipelines für maschinelles Lernen und die Erstellung von ETL für Datenplattformen. Wenn Sie bereits mit Bibliotheken wie Python und Pandas vertraut sind, ist PySpark eine großartige Sprache zum Erlernen und Erstellen skalierbarerer Analysen und Pipelines.

Der Zweck dieses Artikels besteht darin, zu zeigen, wie man mit PySpark ein Modell für maschinelles Lernen erstellt.

Conda erstellt eine virtuelle Python-Umgebung.

Conda verwaltet fast alle Tools und Pakete von Drittanbietern als Pakete, sogar Python und Conda selbst. Anaconda ist eine gepackte Sammlung, die mit Conda, einer bestimmten Python-Version, verschiedenen Paketen usw. vorinstalliert ist.

1. Installieren Sie Anaconda.

Öffnen Sie die Befehlszeile und geben Sie conda -V ein, um zu überprüfen, ob es installiert ist und die aktuelle Conda-Version hat.

Installieren Sie die Standardversion von Python über Anaconda 3.6, die Anaconda3-5.2 entspricht, und Python 3.7 nach 5.3.

(https://repo.anaconda.com/archive/)

2.Häufig verwendete Befehle in Conda

1) Überprüfen Sie, welche Pakete installiert sind

conda list
Nach dem Login kopieren

2) Überprüfen Sie, welche virtuellen Umgebungen derzeit vorhanden sind

conda env list <br>conda info -e
Nach dem Login kopieren

3) Aktivieren Sie „Aktualisieren Sie die aktuelle Conda

conda update conda
Nach dem Login kopieren

3“. Python erstellt eine virtuelle Umgebung. Der Befehl „Anaconda“ erstellt eine virtuelle Umgebung mit der Python-Version x.x und nennt sie „Ihr_Umgebungsname“. Die Datei Your_env_name befindet sich unter der envs-Datei im Anaconda-Installationsverzeichnis.

4. Aktivieren oder wechseln Sie die virtuelle Umgebung.

Öffnen Sie die Befehlszeile und geben Sie python --version ein, um die aktuelle Python-Version zu überprüfen.

conda create -n your_env_name python=x.x
Nach dem Login kopieren

5. Installieren Sie zusätzliche Pakete in der virtuellen Umgebung

Linux:source activate your_env_nam<br>Windows: activate your_env_name
Nach dem Login kopieren

6. Schließen Sie die virtuelle Umgebung Umgebung

conda install -n your_env_name [package]
Nach dem Login kopieren

8. Löschen Sie ein bestimmtes Paket in der Umgebungsuhr

deactivate env_name<br># 或者`activate root`切回root环境<br>Linux下:source deactivate
Nach dem Login kopieren

9. Richten Sie einen inländischen Spiegel ein

Der Server von http://Anaconda.org befindet sich im Ausland. Bei der Installation mehrerer Pakete ist die Conda-Download-Geschwindigkeit häufig sehr langsam. Die Tsinghua TUNA-Spiegelquelle verfügt über den Spiegel des Anaconda-Warehouses. Fügen Sie ihn einfach zur Conda-Konfiguration hinzu:

conda remove -n your_env_name --all
Nach dem Login kopieren

10. Stellen Sie den Standardspiegel wieder her

conda remove --name $your_env_name$package_name
Nach dem Login kopieren

Installieren Sie PySpark

Der Installationsprozess von PySpark ist so einfach wie bei anderen Python-Paketen ( wie Pandas, Numpy, scikit-learn).

Eine wichtige Sache ist, zunächst sicherzustellen, dass Java auf Ihrem Computer installiert ist. Anschließend können Sie PySpark auf Ihrem Jupyter-Notebook ausführen.

Erkunden von Daten

Wir verwenden den Diabetes-Datensatz, der mit dem National Institute of Diabetes and Digestive and Kidney Diseases Diabetes Disease verbunden ist. Das Klassifizierungsziel besteht darin, vorherzusagen, ob ein Patient Diabetes hat (ja/nein).

# 添加Anaconda的TUNA镜像<br>conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/<br><br># 设置搜索时显示通道地址<br>conda config --set show_channel_urls yes
Nach dem Login kopieren
​Erstellen Sie Modelle für maschinelles Lernen mit PySpark MLDer Datensatz besteht aus mehreren medizinischen Prädiktorvariablen und einer Zielvariablen Ergebnis. Zu den Prädiktorvariablen gehören die Anzahl der Schwangerschaften der Patientin, der BMI, der Insulinspiegel, das Alter usw.

Schwangerschaften: Anzahl der Schwangerschaften

Glukose: Blutzuckerkonzentration des oralen Glukosetoleranztests innerhalb von 2 Stunden

Blutdruck: diastolischer Blutdruck (mm Hg)
  • Hautdicke: Trizeps-Hautfaltendicke (mm)
  • Insulin: 2 Stunden Seruminsulin (mu U/ml)
  • BMI: Body-Mass-Index (Gewichtseinheit kg/(Höheneinheit m)²)
  • diabespedigreefunction: Diabetes-Spektrum-Funktion
  • Alter: Alter (Jahr)
  • Ergebnis: Klassenvariable ( 0 Oder 1)
  • Eingabevariablen: Glukose, Blutdruck, BMI, Alter, Schwangerschaft, Insulin, Hautdicke, Diabetes-Spektrum-Funktion.
  • Ausgabevariable: Ergebnis.
  • Schauen Sie sich die ersten fünf Beobachtungen an. Pandas-Datenrahmen sind hübscher als Spark DataFrame.show().
  • conda config --remove-key channels
    Nach dem Login kopieren
  • In PySpark können Sie Daten mit dem DataFrame toPandas() von Pandas anzeigen.
  • from pyspark.sql import SparkSession<br>spark = SparkSession.builder.appName('ml-diabetes').getOrCreate()<br>df = spark.read.csv('diabetes.csv', header = True, inferSchema = True)<br>df.printSchema()
    Nach dem Login kopieren

Überprüfen Sie, ob die Klasse vollständig ausgeglichen ist!

import pandas as pd<br>pd.DataFrame(df.take(5), <br> columns=df.columns).transpose()
Nach dem Login kopieren

​Erstellen Sie Modelle für maschinelles Lernen mit PySpark ML

Beschreibende Statistik

df.toPandas()
Nach dem Login kopieren
Korrelation zwischen unabhängigen Variablen

df.groupby('Outcome').count().toPandas()
Nach dem Login kopieren
​Erstellen Sie Modelle für maschinelles Lernen mit PySpark ML

Datenvorbereitung und Feature-Engineering

In diesem Teil werden wir unnötige Spalten entfernen und fehlende Werte füllen. Abschließend werden Funktionen für das Machine-Learning-Modell ausgewählt. Diese Funktionen werden in zwei Teile unterteilt: Training und Testen.

​Erstellen Sie Modelle für maschinelles Lernen mit PySpark MLBehandlung fehlender Daten

numeric_features = [t[0] for t in df.dtypes if t[1] == 'int']<br>df.select(numeric_features)<br>.describe()<br>.toPandas()<br>.transpose()
Nach dem Login kopieren

Dieser Datensatz ist großartig, ohne dass Werte fehlen.

​Erstellen Sie Modelle für maschinelles Lernen mit PySpark ML

不必要的列丢弃

dataset = dataset.drop('SkinThickness')<br>dataset = dataset.drop('Insulin')<br>dataset = dataset.drop('DiabetesPedigreeFunction')<br>dataset = dataset.drop('Pregnancies')<br><br>dataset.show()
Nach dem Login kopieren

​Erstellen Sie Modelle für maschinelles Lernen mit PySpark ML

特征转换为向量

VectorAssembler —— 将多列合并为向量列的特征转换器。

# 用VectorAssembler合并所有特性<br>required_features = ['Glucose',<br>'BloodPressure',<br>'BMI',<br>'Age']<br><br>from pyspark.ml.feature import VectorAssembler<br><br>assembler = VectorAssembler(<br>inputCols=required_features, <br>outputCol='features')<br><br>transformed_data = assembler.transform(dataset)<br>transformed_data.show()
Nach dem Login kopieren

现在特征转换为向量已完成。

训练和测试拆分

将数据随机分成训练集和测试集,并设置可重复性的种子。

(training_data, test_data) = transformed_data.randomSplit([0.8,0.2], seed =2020)<br>print("训练数据集总数: " + str(training_data.count()))<br>print("测试数据集总数: " + str(test_data.count()))
Nach dem Login kopieren
训练数据集总数:620<br>测试数据集数量:148
Nach dem Login kopieren

机器学习模型构建

随机森林分类器

随机森林是一种监督学习算法,用于分类和回归。但是,它主要用于分类问题。众所周知,森林是由树木组成的,树木越多,森林越茂盛。类似地,随机森林算法在数据样本上创建决策树,然后从每个样本中获取预测,最后通过投票选择最佳解决方案。这是一种比单个决策树更好的集成方法,因为它通过对结果进行平均来减少过拟合。

from pyspark.ml.classification import RandomForestClassifier<br><br>rf = RandomForestClassifier(labelCol='Outcome', <br>featuresCol='features',<br>maxDepth=5)<br>model = rf.fit(training_data)<br>rf_predictions = model.transform(test_data)
Nach dem Login kopieren

评估随机森林分类器模型

from pyspark.ml.evaluation import MulticlassClassificationEvaluator<br><br>multi_evaluator = MulticlassClassificationEvaluator(<br>labelCol = 'Outcome', metricName = 'accuracy')<br>print('Random Forest classifier Accuracy:', multi_evaluator.evaluate(rf_predictions))
Nach dem Login kopieren
Random Forest classifier Accuracy:0.79452
Nach dem Login kopieren

决策树分类器

决策树被广泛使用,因为它们易于解释、处理分类特征、扩展到多类分类设置、不需要特征缩放,并且能够捕获非线性和特征交互。

from pyspark.ml.classification import DecisionTreeClassifier<br><br>dt = DecisionTreeClassifier(featuresCol = 'features',<br>labelCol = 'Outcome',<br>maxDepth = 3)<br>dtModel = dt.fit(training_data)<br>dt_predictions = dtModel.transform(test_data)<br>dt_predictions.select('Glucose', 'BloodPressure', <br>'BMI', 'Age', 'Outcome').show(10)
Nach dem Login kopieren

评估决策树模型

from pyspark.ml.evaluation import MulticlassClassificationEvaluator<br><br>multi_evaluator = MulticlassClassificationEvaluator(<br>labelCol = 'Outcome', <br>metricName = 'accuracy')<br>print('Decision Tree Accuracy:', <br>multi_evaluator.evaluate(dt_predictions))
Nach dem Login kopieren
Decision Tree Accuracy: 0.78767
Nach dem Login kopieren

逻辑回归模型

逻辑回归是在因变量是二分(二元)时进行的适当回归分析。与所有回归分析一样,逻辑回归是一种预测分析。逻辑回归用于描述数据并解释一个因二元变量与一个或多个名义、序数、区间或比率水平自变量之间的关系。当因变量(目标)是分类时,使用逻辑回归。

from pyspark.ml.classification import LogisticRegression<br><br>lr = LogisticRegression(featuresCol = 'features', <br>labelCol = 'Outcome', <br>maxIter=10)<br>lrModel = lr.fit(training_data)<br>lr_predictions = lrModel.transform(test_data)
Nach dem Login kopieren

评估我们的逻辑回归模型。

from pyspark.ml.evaluation import MulticlassClassificationEvaluator<br><br>multi_evaluator = MulticlassClassificationEvaluator(<br>labelCol = 'Outcome',<br>metricName = 'accuracy')<br>print('Logistic Regression Accuracy:', <br>multi_evaluator.evaluate(lr_predictions))
Nach dem Login kopieren
Logistic Regression Accuracy:0.78767
Nach dem Login kopieren

梯度提升树分类器模型

梯度提升是一种用于回归和分类问题的机器学习技术,它以弱预测模型(通常是决策树)的集合形式生成预测模型。

from pyspark.ml.classification import GBTClassifier<br>gb = GBTClassifier(<br>labelCol = 'Outcome', <br>featuresCol = 'features')<br>gbModel = gb.fit(training_data)<br>gb_predictions = gbModel.transform(test_data)
Nach dem Login kopieren

评估我们的梯度提升树分类器。

from pyspark.ml.evaluation import MulticlassClassificationEvaluator<br>multi_evaluator = MulticlassClassificationEvaluator(<br>labelCol = 'Outcome',<br>metricName = 'accuracy')<br>print('Gradient-boosted Trees Accuracy:',<br>multi_evaluator.evaluate(gb_predictions))
Nach dem Login kopieren
Gradient-boosted Trees Accuracy:0.80137
Nach dem Login kopieren

结论

PySpark 是一种非常适合数据科学家学习的语言,因为它支持可扩展的分析和 ML 管道。如果您已经熟悉 Python 和 Pandas,那么您的大部分知识都可以应用于 Spark。总而言之,我们已经学习了如何使用 PySpark 构建机器学习应用程序。我们尝试了三种算法,梯度提升在我们的数据集上表现最好。

Das obige ist der detaillierte Inhalt von​Erstellen Sie Modelle für maschinelles Lernen mit PySpark ML. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat -Befehle und wie man sie benutzt
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen Jun 01, 2024 am 10:58 AM

In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

Identifizieren Sie Über- und Unteranpassung anhand von Lernkurven Identifizieren Sie Über- und Unteranpassung anhand von Lernkurven Apr 29, 2024 pm 06:50 PM

In diesem Artikel wird vorgestellt, wie Überanpassung und Unteranpassung in Modellen für maschinelles Lernen mithilfe von Lernkurven effektiv identifiziert werden können. Unteranpassung und Überanpassung 1. Überanpassung Wenn ein Modell mit den Daten übertrainiert ist, sodass es daraus Rauschen lernt, spricht man von einer Überanpassung des Modells. Ein überangepasstes Modell lernt jedes Beispiel so perfekt, dass es ein unsichtbares/neues Beispiel falsch klassifiziert. Für ein überangepasstes Modell erhalten wir einen perfekten/nahezu perfekten Trainingssatzwert und einen schrecklichen Validierungssatz-/Testwert. Leicht geändert: „Ursache der Überanpassung: Verwenden Sie ein komplexes Modell, um ein einfaches Problem zu lösen und Rauschen aus den Daten zu extrahieren. Weil ein kleiner Datensatz als Trainingssatz möglicherweise nicht die korrekte Darstellung aller Daten darstellt. 2. Unteranpassung Heru.“

Transparent! Eine ausführliche Analyse der Prinzipien der wichtigsten Modelle des maschinellen Lernens! Transparent! Eine ausführliche Analyse der Prinzipien der wichtigsten Modelle des maschinellen Lernens! Apr 12, 2024 pm 05:55 PM

Laienhaft ausgedrückt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Eingabedaten einer vorhergesagten Ausgabe zuordnet. Genauer gesagt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Modellparameter anpasst, indem sie aus Trainingsdaten lernt, um den Fehler zwischen der vorhergesagten Ausgabe und der wahren Bezeichnung zu minimieren. Beim maschinellen Lernen gibt es viele Modelle, z. B. logistische Regressionsmodelle, Entscheidungsbaummodelle, Support-Vektor-Maschinenmodelle usw. Jedes Modell verfügt über seine anwendbaren Datentypen und Problemtypen. Gleichzeitig gibt es viele Gemeinsamkeiten zwischen verschiedenen Modellen oder es gibt einen verborgenen Weg für die Modellentwicklung. Am Beispiel des konnektionistischen Perzeptrons können wir es durch Erhöhen der Anzahl verborgener Schichten des Perzeptrons in ein tiefes neuronales Netzwerk umwandeln. Wenn dem Perzeptron eine Kernelfunktion hinzugefügt wird, kann es in eine SVM umgewandelt werden. Dieses hier

Die Entwicklung der künstlichen Intelligenz in der Weltraumforschung und der Siedlungstechnik Die Entwicklung der künstlichen Intelligenz in der Weltraumforschung und der Siedlungstechnik Apr 29, 2024 pm 03:25 PM

In den 1950er Jahren wurde die künstliche Intelligenz (KI) geboren. Damals entdeckten Forscher, dass Maschinen menschenähnliche Aufgaben wie das Denken ausführen können. Später, in den 1960er Jahren, finanzierte das US-Verteidigungsministerium künstliche Intelligenz und richtete Labore für die weitere Entwicklung ein. Forscher finden Anwendungen für künstliche Intelligenz in vielen Bereichen, etwa bei der Erforschung des Weltraums und beim Überleben in extremen Umgebungen. Unter Weltraumforschung versteht man die Erforschung des Universums, das das gesamte Universum außerhalb der Erde umfasst. Der Weltraum wird als extreme Umgebung eingestuft, da sich seine Bedingungen von denen auf der Erde unterscheiden. Um im Weltraum zu überleben, müssen viele Faktoren berücksichtigt und Vorkehrungen getroffen werden. Wissenschaftler und Forscher glauben, dass die Erforschung des Weltraums und das Verständnis des aktuellen Zustands aller Dinge dazu beitragen können, die Funktionsweise des Universums zu verstehen und sich auf mögliche Umweltkrisen vorzubereiten

Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Jun 03, 2024 pm 01:25 PM

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Erklärbare KI: Erklären komplexer KI/ML-Modelle Erklärbare KI: Erklären komplexer KI/ML-Modelle Jun 03, 2024 pm 10:08 PM

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Jun 05, 2024 pm 08:51 PM

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Ist Flash Attention stabil? Meta und Harvard stellten fest, dass die Gewichtsabweichungen ihrer Modelle um Größenordnungen schwankten Ist Flash Attention stabil? Meta und Harvard stellten fest, dass die Gewichtsabweichungen ihrer Modelle um Größenordnungen schwankten May 30, 2024 pm 01:24 PM

MetaFAIR hat sich mit Harvard zusammengetan, um einen neuen Forschungsrahmen zur Optimierung der Datenverzerrung bereitzustellen, die bei der Durchführung groß angelegten maschinellen Lernens entsteht. Es ist bekannt, dass das Training großer Sprachmodelle oft Monate dauert und Hunderte oder sogar Tausende von GPUs verwendet. Am Beispiel des Modells LLaMA270B erfordert das Training insgesamt 1.720.320 GPU-Stunden. Das Training großer Modelle stellt aufgrund des Umfangs und der Komplexität dieser Arbeitsbelastungen einzigartige systemische Herausforderungen dar. In letzter Zeit haben viele Institutionen über Instabilität im Trainingsprozess beim Training generativer SOTA-KI-Modelle berichtet. Diese treten normalerweise in Form von Verlustspitzen auf. Beim PaLM-Modell von Google kam es beispielsweise während des Trainingsprozesses zu Instabilitäten. Numerische Voreingenommenheit ist die Hauptursache für diese Trainingsungenauigkeit.

See all articles