


BLOOM kann eine neue Kultur für die KI-Forschung schaffen, aber es bleiben Herausforderungen bestehen
Übersetzer |. Li Rui
Rezensent |.Das BigScience-Forschungsprojekt hat kürzlich ein großes Sprachmodell BLOOM veröffentlicht. Auf den ersten Blick sieht es wie ein weiterer Versuch aus, OpenAIs GPT-3 zu kopieren.
Aber was BLOOM von anderen groß angelegten Modellen natürlicher Sprache (LLMs) unterscheidet, sind seine Bemühungen bei der Erforschung, Entwicklung, Schulung und Veröffentlichung von Modellen für maschinelles Lernen.
In den letzten Jahren haben große Technologieunternehmen groß angelegte Modelle natürlicher Sprache (LLM) wie streng gehütete Geschäftsgeheimnisse versteckt, und das BigScience-Team hat von Beginn des Projekts an Transparenz und Offenheit in den Mittelpunkt von BLOOM gestellt.
Das Ergebnis ist ein großes Sprachmodell, das zum Forschen und Lernen bereit ist und für jedermann verfügbar ist. Das von BLOOM etablierte Beispiel von Open Source und offener Zusammenarbeit wird für die zukünftige Forschung in groß angelegten Modellen natürlicher Sprache (LLM) und anderen Bereichen der künstlichen Intelligenz von großem Nutzen sein. Es gibt jedoch immer noch einige Herausforderungen, die großen Sprachmodellen innewohnen und angegangen werden müssen.
Was ist BLOOM?
BLOOM ist die Abkürzung für „BigScience Large-Scale Open Science Open Access Multilingual Model“. Aus Datensicht unterscheidet es sich nicht wesentlich von GPT-3 und OPT-175B. Es handelt sich um ein sehr großes Transformer-Modell mit 176 Milliarden Parametern, das mit 1,6 TB Daten trainiert wurde, einschließlich natürlicher Sprache und Software-Quellcode.
Wie GPT-3 kann es viele Aufgaben durch Null-Schuss- oder Wenig-Schuss-Lernen ausführen, einschließlich Textgenerierung, Zusammenfassung, Beantwortung von Fragen und Programmierung.
Aber die Bedeutung von BLOOM liegt in der Organisation und dem Bauprozess dahinter.
BigScience ist ein 2021 vom Machine Learning Model Center „Hugging Face“ ins Leben gerufenes Forschungsprojekt. Laut der Beschreibung auf seiner Website zielt das Projekt darauf ab, „eine alternative Möglichkeit aufzuzeigen, große Sprachmodelle und große Forschungsartefakte innerhalb der KI/NLP-Forschungsgemeinschaft zu erstellen, zu lernen und zu teilen.“ In dieser Hinsicht wird BigScience from Europe Inspiration herangezogen von wissenschaftlichen Initiativen wie dem Zentrum für Kernforschung (CERN) und dem Large Hadron Collider (LHC), wo eine offene wissenschaftliche Zusammenarbeit die Schaffung groß angelegter Artefakte fördert, die für die gesamte Forschungsgemeinschaft nützlich sind.
In einem Jahr seit Mai 2021 haben mehr als 1.000 Forscher aus 60 Ländern und mehr als 250 Institutionen BLOOM in BigScience mitgestaltet.
Transparenz, Offenheit und Inklusion
Während die meisten großen groß angelegten Modelle natürlicher Sprache (LLMs) nur auf englischem Text trainiert werden, umfasst das Trainingskorpus von BLOOM 46 natürliche Sprachen und 13 Programmiersprachen. Dies ist in vielen Regionen nützlich, in denen die Hauptsprache nicht Englisch ist.
BLOOM durchbricht auch die tatsächliche Abhängigkeit von den Modellen großer Technologie-Ausbildungsunternehmen. Eines der Hauptprobleme bei großen natürlichsprachlichen Modellen (LLMs) sind die hohen Kosten für Training und Optimierung. Diese Barriere macht große natürlichsprachliche Modelle (LLMs) mit 100 Milliarden Parametern zur ausschließlichen Domäne großer Technologieunternehmen mit großen finanziellen Mitteln. In den letzten Jahren wurden Labore für künstliche Intelligenz von großen Technologieunternehmen angezogen, um subventionierte Cloud-Computing-Ressourcen zu erhalten und ihre Forschung zu finanzieren.
Im Gegensatz dazu erhielt das BigScience-Forschungsteam vom französischen Nationalen Zentrum für wissenschaftliche Forschung einen Zuschuss in Höhe von 3 Millionen Euro, um BLOOM auf dem Supercomputer Jean Zay zu trainieren. Es gibt keine Vereinbarung, die einem kommerziellen Unternehmen eine exklusive Lizenz für die Technologie gewährt, noch gibt es eine Verpflichtung, das Modell zu kommerzialisieren und in ein profitables Produkt umzuwandeln.
Darüber hinaus ist das BigScience-Team hinsichtlich des gesamten Modellschulungsprozesses völlig transparent. Sie veröffentlichen Datensätze, Sitzungsprotokolle, Diskussionen und Code sowie Protokolle und technische Details von Trainingsmodellen.
Forscher untersuchen die Daten und Metadaten des Modells und veröffentlichen interessante Erkenntnisse.
Zum Beispiel twitterte der Forscher David McClure am 12. Juli 2022: „Ich habe mir den Trainingsdatensatz hinter dem wirklich coolen BLOOM-Modell von Bigscience und Hugging Face angesehen. Es gibt einige aus dem englischen Korpus 10 Millionen Proben, etwa 1,25.“ % der Gesamtmenge, codiert mit „all-distilroberta-v1“, dann UMAP auf 2d. „
Natürlich kann das trainierte Modell selbst auf der Plattform von Hugging Face heruntergeladen werden, was dieses Problem lindert. Forscher haben Millionen von Dollar für die Schulung ausgegeben.
Facebook hat letzten Monat unter einigen Einschränkungen eines seiner groß angelegten Modelle in natürlicher Sprache (LLM) als Open Source bereitgestellt. Die durch BLOOM geschaffene Transparenz ist jedoch beispiellos und verspricht, einen neuen Standard für die Branche zu setzen.
Teven LeScao, Co-Leiter der BLOOM-Schulung, sagte: „Im Gegensatz zur Geheimhaltung industrieller KI-Forschungslabore zeigt BLOOM, dass die leistungsstärksten KI-Modelle von der breiteren Forschungsgemeinschaft auf verantwortungsvolle und offene Weise trainiert und veröffentlicht werden können.“ .
Herausforderungen bleiben
Während die Bemühungen von BigScience, Offenheit und Transparenz in die KI-Forschung und groß angelegte Sprachmodelle zu bringen, lobenswert sind, bleiben die Herausforderungen, die diesem Bereich innewohnen, unverändert.
Die groß angelegte Forschung an natürlichen Sprachmodellen (LLM) geht in Richtung immer größerer Modelle, was die Schulungs- und Betriebskosten weiter erhöhen wird. BLOOM verwendet für das Training 384 Nvidia Tesla A100-GPUs (Preis pro Stück etwa 32.000 US-Dollar). Und größere Modelle erfordern größere Rechencluster. Das BigScience-Team hat angekündigt, weiterhin weitere Open-Source-LLMs (große natürliche Sprachmodelle) zu erstellen, es bleibt jedoch abzuwarten, wie das Team seine immer teurer werdende Forschung finanzieren wird. OpenAI begann beispielsweise als gemeinnützige Organisation und entwickelte sich später zu einer gewinnorientierten Organisation, die Produkte verkauft und auf die Finanzierung von Microsoft angewiesen ist.
Ein weiteres zu lösendes Problem sind die enormen Kosten für den Betrieb dieser Modelle. Das komprimierte BLOOM-Modell ist 227 GB groß und erfordert für seine Ausführung spezielle Hardware mit Hunderten von GB Speicher. Zum Vergleich: Für GPT-3 ist ein Rechencluster erforderlich, der einem Nvidia DGX 2 entspricht und etwa 400.000 US-Dollar kostet. Hugging Face plant die Einführung einer API-Plattform, die es Forschern ermöglichen wird, das Modell für etwa 40 US-Dollar pro Stunde zu nutzen, was erhebliche Kosten darstellt.
Die Kosten für den Betrieb von BLOOM wirken sich auch auf die Community für angewandtes maschinelles Lernen, Start-ups und Organisationen aus, die Produkte entwickeln möchten, die auf groß angelegten Modellen natürlicher Sprache (LLMs) basieren. Derzeit eignet sich die von OpenAI bereitgestellte GPT-3-API besser für die Produktentwicklung. Es wird interessant sein zu sehen, welche Richtung BigScience und Hugging Face einschlagen, um Entwicklern die Entwicklung von Produkten auf der Grundlage ihrer wertvollen Forschung zu ermöglichen.
In diesem Zusammenhang freut man sich darauf, dass in Zukunft kleinere Versionen der Modelle von BigScience erscheinen. Entgegen der häufigen Darstellung in den Medien gilt bei Large Natural Language Models (LLMs) immer noch das „No Free Lunch“-Prinzip. Dies bedeutet, dass bei der Anwendung von maschinellem Lernen ein kompakteres Modell, das auf eine bestimmte Aufgabe abgestimmt ist, effektiver ist als ein sehr großes Modell mit durchschnittlicher Leistung bei vielen Aufgaben. Codex ist beispielsweise eine modifizierte Version von GPT-3, die große Unterstützung bei der Programmierung zu einem Bruchteil der Größe und Kosten von GPT-3 bietet. GitHub bietet derzeit ein Codex-basiertes Produkt, Copilot, für 10 US-Dollar pro Monat an.
Es wird interessant sein zu untersuchen, wohin sich akademische und angewandte KI in Zukunft entwickeln wird, da BLOOM eine neue Kultur aufbauen möchte.
Originaltitel: BLOOM kann eine neue Kultur für die KI-Forschung schaffen – aber Herausforderungen bleiben bestehen, Autor: Ben Dickson
Das obige ist der detaillierte Inhalt vonBLOOM kann eine neue Kultur für die KI-Forschung schaffen, aber es bleiben Herausforderungen bestehen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S

Laut Nachrichten dieser Website vom 5. Juli veröffentlichte GlobalFoundries am 1. Juli dieses Jahres eine Pressemitteilung, in der die Übernahme der Power-Galliumnitrid (GaN)-Technologie und des Portfolios an geistigem Eigentum von Tagore Technology angekündigt wurde, in der Hoffnung, seinen Marktanteil in den Bereichen Automobile und Internet auszubauen Anwendungsbereiche für Rechenzentren mit künstlicher Intelligenz, um höhere Effizienz und bessere Leistung zu erforschen. Da sich Technologien wie generative künstliche Intelligenz (GenerativeAI) in der digitalen Welt weiterentwickeln, ist Galliumnitrid (GaN) zu einer Schlüssellösung für nachhaltiges und effizientes Energiemanagement, insbesondere in Rechenzentren, geworden. Auf dieser Website wurde die offizielle Ankündigung zitiert, dass sich das Ingenieurteam von Tagore Technology im Rahmen dieser Übernahme mit GF zusammenschließen wird, um die Galliumnitrid-Technologie weiterzuentwickeln. G
